OFFSET
0,18
LINKS
Reinhard Zumkeller, Rows n = 0..100 of table, flattened
FORMULA
EXAMPLE
Triangle begins as:
0;
0, 0;
0, 0, 0;
0, 0, 0, 0;
0, 0, 1, 0, 0;
0, 0, 3, 3, 0, 0;
0, 0, 6, 12, 6, 0, 0;
0, 0, 10, 30, 30, 10, 0, 0;
0, 0, 15, 60, 91, 60, 15, 0, 0;
0, 0, 21, 105, 215, 215, 105, 21, 0, 0;
0, 0, 28, 168, 435, 590, 435, 168, 28, 0, 0;
0, 0, 36, 252, 791, 1365, 1365, 791, 252, 36, 0, 0;
0, 0, 45, 360, 1330, 2800, 3571, 2800, 1330, 360, 45, 0, 0;
0, 0, 55, 495, 2106, 5250, 8197, 8197, 5250, 2106, 495, 55, 0, 0;
MATHEMATICA
T[n_, k_]:= ((-1)^(n-k)*Hypergeometric2F1[-n+k, k+1, 1, 2] - 2*Binomial[n, k] +1)/2;
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 08 2024 *)
PROG
(Haskell)
a225413 n k = a225413_tabl !! n !! k
a225413_row n = a225413_tabl !! n
a225413_tabl = map (map (`div` 2)) $
zipWith (zipWith (-)) a101164_tabl a014473_tabl
-- Reinhard Zumkeller, Jul 30 2013
(Magma)
A008288:= func< n, k | (&+[Binomial(n-j, j)*Binomial(n-2*j, k-j): j in [0..k]]) >;
[A225413(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 08 2024
(SageMath)
def A008288(n, k): return sum(binomial(n-j, j)*binomial(n-2*j, k-j) for j in range(k+1))
flatten([[A225413(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 08 2024
CROSSREFS
KEYWORD
AUTHOR
Jeremy Gardiner, Jul 28 2013
STATUS
approved