login
A225413
Triangle read by rows: T(n,k) = (A101164(n,k) - A014473(n,k))/2.
2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 6, 12, 6, 0, 0, 0, 0, 10, 30, 30, 10, 0, 0, 0, 0, 15, 60, 91, 60, 15, 0, 0, 0, 0, 21, 105, 215, 215, 105, 21, 0, 0, 0, 0, 28, 168, 435, 590, 435, 168, 28, 0, 0, 0, 0, 36, 252, 791, 1365, 1365, 791, 252, 36, 0, 0
OFFSET
0,18
COMMENTS
Has opposite parity to A140356, A155454.
LINKS
FORMULA
T(n, k) = (A101164(n,k) - A014473(n,k))/2.
T(n, k) = (A008288(n,k) - 2*A007318(n,k) + 1)/2.
From G. C. Greubel, Apr 08 2024: (Start)
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = (A000129(n+1) + n + 1 - 2^(n+1))/2.
Sum_{k=0..n} (-1)^k*T(n, k) = A121262(n) - [n=0]. (End)
EXAMPLE
Triangle begins as:
0;
0, 0;
0, 0, 0;
0, 0, 0, 0;
0, 0, 1, 0, 0;
0, 0, 3, 3, 0, 0;
0, 0, 6, 12, 6, 0, 0;
0, 0, 10, 30, 30, 10, 0, 0;
0, 0, 15, 60, 91, 60, 15, 0, 0;
0, 0, 21, 105, 215, 215, 105, 21, 0, 0;
0, 0, 28, 168, 435, 590, 435, 168, 28, 0, 0;
0, 0, 36, 252, 791, 1365, 1365, 791, 252, 36, 0, 0;
0, 0, 45, 360, 1330, 2800, 3571, 2800, 1330, 360, 45, 0, 0;
0, 0, 55, 495, 2106, 5250, 8197, 8197, 5250, 2106, 495, 55, 0, 0;
MATHEMATICA
T[n_, k_]:= ((-1)^(n-k)*Hypergeometric2F1[-n+k, k+1, 1, 2] - 2*Binomial[n, k] +1)/2;
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 08 2024 *)
PROG
(Haskell)
a225413 n k = a225413_tabl !! n !! k
a225413_row n = a225413_tabl !! n
a225413_tabl = map (map (`div` 2)) $
zipWith (zipWith (-)) a101164_tabl a014473_tabl
-- Reinhard Zumkeller, Jul 30 2013
(Magma)
A008288:= func< n, k | (&+[Binomial(n-j, j)*Binomial(n-2*j, k-j): j in [0..k]]) >;
A225413:= func< n, k | (A008288(n, k) - 2*Binomial(n, k) + 1)/2 >;
[A225413(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 08 2024
(SageMath)
def A008288(n, k): return sum(binomial(n-j, j)*binomial(n-2*j, k-j) for j in range(k+1))
def A225413(n, k): return (A008288(n, k) -2*binomial(n, k) +1)//2
flatten([[A225413(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 08 2024
CROSSREFS
3rd column = A000217 (triangular numbers).
4th column = A027480 (n(n+1)(n+2)/2).
Sequence in context: A318330 A199261 A110492 * A180995 A144331 A216805
KEYWORD
nonn,easy,tabl
AUTHOR
Jeremy Gardiner, Jul 28 2013
STATUS
approved