OFFSET
0,1
COMMENTS
This is the 10's complement of A225402.
Equivalently, the 10-adic cube root of 1/3, i.e., solution to 3*x^3 = 1 (mod 10^n) for all n. - M. F. Hasler, Jan 02 2019
LINKS
Robert Israel, Table of n, a(n) for n = 0..10000
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 9 * (3 * b(n-1)^3 - 1) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 12 2019
EXAMPLE
3^3 == 7 (mod 10).
23^3 == 67 (mod 10^2).
523^3 == 667 (mod 10^3).
3523^3 == 6667 (mod 10^4).
53523^3 == 66667 (mod 10^5).
553523^3 == 666667 (mod 10^6).
MAPLE
op([1, 3], padic:-rootp(3*x^3 -1, 10, 101)); # Robert Israel, Aug 04 2019
PROG
(PARI) n=0; for(i=1, 100, m=(2*(10^i-1)/3)+1; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
(PARI) upto(N=100, m=1/3)=Vecrev(digits(lift(chinese(Mod((m+O(5^N))^m, 5^N), Mod((m+O(2^N))^m, 2^N)))), N) \\ Following Andrew Howroyd's code for A319740. - M. F. Hasler, Jan 02 2019
(Ruby)
def A225411(n)
ary = [3]
a = 3
n.times{|i|
b = (a + 9 * (3 * a ** 3 - 1)) % (10 ** (i + 2))
ary << (b - a) / (10 ** (i + 1))
a = b
}
ary
end
p A225411(100) # Seiichi Manyama, Aug 12 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Aswini Vaidyanathan, May 07 2013
STATUS
approved