login
A225411
10-adic integer x such that x^3 == (6*(10^(n+1)-1)/9)+1 mod 10^(n+1) for all n.
10
3, 2, 5, 3, 5, 5, 4, 1, 6, 5, 5, 3, 1, 6, 8, 4, 8, 9, 4, 8, 3, 0, 3, 8, 6, 8, 6, 2, 7, 7, 5, 3, 5, 5, 6, 1, 6, 4, 6, 6, 4, 3, 7, 4, 7, 6, 7, 1, 3, 6, 5, 8, 1, 0, 3, 2, 9, 5, 1, 6, 3, 2, 8, 8, 3, 3, 4, 7, 9, 2, 5, 9, 0, 7, 1, 9, 6, 9, 6, 9, 2, 6, 0, 2, 0, 2, 6, 5, 3, 4, 6, 8, 6, 9, 9, 1, 2, 5, 4, 2
OFFSET
0,1
COMMENTS
This is the 10's complement of A225402.
Equivalently, the 10-adic cube root of 1/3, i.e., solution to 3*x^3 = 1 (mod 10^n) for all n. - M. F. Hasler, Jan 02 2019
LINKS
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 9 * (3 * b(n-1)^3 - 1) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 12 2019
EXAMPLE
3^3 == 7 (mod 10).
23^3 == 67 (mod 10^2).
523^3 == 667 (mod 10^3).
3523^3 == 6667 (mod 10^4).
53523^3 == 66667 (mod 10^5).
553523^3 == 666667 (mod 10^6).
MAPLE
op([1, 3], padic:-rootp(3*x^3 -1, 10, 101)); # Robert Israel, Aug 04 2019
PROG
(PARI) n=0; for(i=1, 100, m=(2*(10^i-1)/3)+1; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
(PARI) upto(N=100, m=1/3)=Vecrev(digits(lift(chinese(Mod((m+O(5^N))^m, 5^N), Mod((m+O(2^N))^m, 2^N)))), N) \\ Following Andrew Howroyd's code for A319740. - M. F. Hasler, Jan 02 2019
(Ruby)
def A225411(n)
ary = [3]
a = 3
n.times{|i|
b = (a + 9 * (3 * a ** 3 - 1)) % (10 ** (i + 2))
ary << (b - a) / (10 ** (i + 1))
a = b
}
ary
end
p A225411(100) # Seiichi Manyama, Aug 12 2019
CROSSREFS
Cf. A225402, A309600, A319740 (10-adic cube root of 1/11).
Sequence in context: A206562 A155981 A057958 * A247815 A057953 A372679
KEYWORD
nonn,base
AUTHOR
Aswini Vaidyanathan, May 07 2013
STATUS
approved