login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225412
Digits of the 10-adic integer (1/9)^(1/3).
10
9, 2, 5, 1, 1, 7, 1, 3, 6, 2, 6, 3, 3, 8, 2, 1, 4, 1, 0, 2, 7, 1, 2, 2, 4, 6, 1, 6, 0, 1, 0, 1, 2, 7, 2, 8, 2, 8, 8, 3, 6, 7, 0, 7, 7, 7, 2, 2, 6, 2, 6, 9, 9, 6, 8, 1, 3, 2, 1, 5, 4, 3, 7, 4, 7, 7, 6, 9, 6, 1, 4, 0, 2, 0, 9, 6, 3, 6, 6, 1, 9, 1, 9, 9, 7, 4, 9, 8, 8, 7, 7, 3, 0, 8, 7, 7, 8, 8, 0, 8
OFFSET
0,1
COMMENTS
This is the 10's complement of A153042.
Equivalently, the 10-adic cube root of 1/9, i.e., x such that 9*x^3 = 1 (mod 10^n) for all n. - M. F. Hasler, Jan 02 2019
LINKS
FORMULA
p = ...711529, q = A153042 = ...288471, p + q = 0. - Seiichi Manyama, Aug 04 2019
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 - 1) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 13 2019
EXAMPLE
9^3 == -1 (mod 10).
29^3 == -11 (mod 10^2).
529^3 == -111 (mod 10^3).
1529^3 == -1111 (mod 10^4).
11529^3 == -11111 (mod 10^5).
711529^3 == -111111 (mod 10^6).
MAPLE
op([1, 3], padic:-rootp(9*x^3 -1, 10, 101)); # Robert Israel, Aug 04 2019
PROG
(PARI) n=0; for(i=1, 100, m=(8*(10^i-1)/9)+1; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
(PARI) upto(N=100, m=1/3)=Vecrev(digits(lift(chinese(Mod((1/9+O(5^N))^m, 5^N), Mod((1/9+O(2^N))^m, 2^N)))), N) \\ Following Andrew Howroyd's code for A319740. - M. F. Hasler, Jan 02 2019
(PARI) Vecrev(digits(truncate(-(-1/9+O(10^100))^(1/3)))) \\ Seiichi Manyama, Aug 04 2019
(Ruby)
def A225412(n)
ary = [9]
a = 9
n.times{|i|
b = (a + 7 * (9 * a ** 3 - 1)) % (10 ** (i + 2))
ary << (b - a) / (10 ** (i + 1))
a = b
}
ary
end
p A225412(100) # Seiichi Manyama, Aug 13 2019
CROSSREFS
Cf. A309600, A319740 (10-adic cube root of 1/11).
Digits of 10-adic integers:
A153042 ((-1/9)^(1/3));
A225406 ( 9^(1/3));
A225409 ( (-9)^(1/3)).
Sequence in context: A089065 A248319 A154398 * A176019 A079059 A342574
KEYWORD
nonn,base
AUTHOR
Aswini Vaidyanathan, May 07 2013
EXTENSIONS
Name edited by Seiichi Manyama, Aug 04 2019
STATUS
approved