login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Digits of the 10-adic integer (1/9)^(1/3).
10

%I #54 Aug 13 2019 08:36:44

%S 9,2,5,1,1,7,1,3,6,2,6,3,3,8,2,1,4,1,0,2,7,1,2,2,4,6,1,6,0,1,0,1,2,7,

%T 2,8,2,8,8,3,6,7,0,7,7,7,2,2,6,2,6,9,9,6,8,1,3,2,1,5,4,3,7,4,7,7,6,9,

%U 6,1,4,0,2,0,9,6,3,6,6,1,9,1,9,9,7,4,9,8,8,7,7,3,0,8,7,7,8,8,0,8

%N Digits of the 10-adic integer (1/9)^(1/3).

%C This is the 10's complement of A153042.

%C Equivalently, the 10-adic cube root of 1/9, i.e., x such that 9*x^3 = 1 (mod 10^n) for all n. - _M. F. Hasler_, Jan 02 2019

%H Seiichi Manyama, <a href="/A225412/b225412.txt">Table of n, a(n) for n = 0..10000</a>

%F p = ...711529, q = A153042 = ...288471, p + q = 0. - _Seiichi Manyama_, Aug 04 2019

%F Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 - 1) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - _Seiichi Manyama_, Aug 13 2019

%e 9^3 == -1 (mod 10).

%e 29^3 == -11 (mod 10^2).

%e 529^3 == -111 (mod 10^3).

%e 1529^3 == -1111 (mod 10^4).

%e 11529^3 == -11111 (mod 10^5).

%e 711529^3 == -111111 (mod 10^6).

%p op([1,3],padic:-rootp(9*x^3 -1, 10, 101)); # _Robert Israel_, Aug 04 2019

%o (PARI) n=0; for(i=1, 100, m=(8*(10^i-1)/9)+1; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))

%o (PARI) upto(N=100, m=1/3)=Vecrev(digits(lift(chinese(Mod((1/9+O(5^N))^m, 5^N), Mod((1/9+O(2^N))^m, 2^N)))), N) \\ Following _Andrew Howroyd_'s code for A319740. - _M. F. Hasler_, Jan 02 2019

%o (PARI) Vecrev(digits(truncate(-(-1/9+O(10^100))^(1/3)))) \\ _Seiichi Manyama_, Aug 04 2019

%o (Ruby)

%o def A225412(n)

%o ary = [9]

%o a = 9

%o n.times{|i|

%o b = (a + 7 * (9 * a ** 3 - 1)) % (10 ** (i + 2))

%o ary << (b - a) / (10 ** (i + 1))

%o a = b

%o }

%o ary

%o end

%o p A225412(100) # _Seiichi Manyama_, Aug 13 2019

%Y Cf. A309600, A319740 (10-adic cube root of 1/11).

%Y Digits of 10-adic integers:

%Y A153042 ((-1/9)^(1/3));

%Y A225406 ( 9^(1/3));

%Y A225409 ( (-9)^(1/3)).

%K nonn,base

%O 0,1

%A _Aswini Vaidyanathan_, May 07 2013

%E Name edited by _Seiichi Manyama_, Aug 04 2019