login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153042
a(n)...a(1) = digital representation of n-digit number m, the cube of which, m^3, ends with n 1's.
9
1, 7, 4, 8, 8, 2, 8, 6, 3, 7, 3, 6, 6, 1, 7, 8, 5, 8, 9, 7, 2, 8, 7, 7, 5, 3, 8, 3, 9, 8, 9, 8, 7, 2, 7, 1, 7, 1, 1, 6, 3, 2, 9, 2, 2, 2, 7, 7, 3, 7, 3, 0, 0, 3, 1, 8, 6, 7, 8, 4, 5, 6, 2, 5, 2, 2, 3, 0, 3, 8, 5, 9, 7, 9, 0, 3, 6, 3, 3, 8, 0, 8, 0, 0, 2, 5, 0, 1, 1, 2, 2, 6, 9, 1, 2, 2, 1, 1, 9, 1, 8, 8, 5, 7, 7
OFFSET
1,2
COMMENTS
For any n there is only one solution. Case a(n)=0 means that cube of (n-1)-digit number ends with n (not (n-1)) 1's. Case a(n+1)=a(n)=0 means that cube of (n-1)-digit number ends with (n+1) (not (n-1)) 1's, etc.
10-adic integer x such that x^3 == (10^n-1)/9 mod 10^n. - Aswini Vaidyanathan, May 07 2013
10-adic digits of the cubic root of -1/9. - Max Alekseyev, Jul 12 2022
LINKS
EXAMPLE
1^3= 1; 71^3 = 357911; 471^3 = 104487111; 8471^3 = 607860671111.
MAPLE
N:= 200:
op([1, 3], padic:-rootp(9*x^3+1, 10, N+2))[1..N+1]; # Robert Israel, Mar 25 2018
PROG
(PARI) n=0; for(i=1, 100, m=(10^i-1)/9; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break))) \\ Aswini Vaidyanathan, May 07 2013
(PARI) digits(sqrtn(-1/9 + O(10^100), 3)) \\ Max Alekseyev, Jul 12 2022
CROSSREFS
Sequence in context: A330596 A296427 A092034 * A330595 A119824 A271173
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Dec 17 2008, corrected Dec 20 2008
STATUS
approved