login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225406
Digits of the 10-adic integer 9^(1/3).
8
9, 6, 5, 0, 6, 6, 3, 4, 8, 6, 6, 0, 4, 8, 5, 4, 5, 9, 4, 5, 1, 1, 9, 4, 0, 6, 0, 8, 1, 3, 7, 0, 6, 6, 9, 4, 8, 3, 9, 9, 3, 0, 2, 4, 2, 0, 3, 5, 9, 8, 6, 5, 5, 0, 9, 6, 7, 7, 4, 8, 0, 7, 4, 6, 1, 0, 3, 2, 9, 8, 5, 8, 2, 1, 5, 7, 0, 9, 0, 9, 8, 8, 1, 6, 0, 6, 8, 6, 0, 3, 9, 5, 0, 9, 9, 5, 6, 5, 3, 7
OFFSET
0,1
LINKS
FORMULA
p = ...660569, q = A225409 = ...339431, p + q = 0. - Seiichi Manyama, Aug 04 2019
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 3 * (b(n-1)^3 - 9) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 13 2019
EXAMPLE
9^3 == 9 (mod 10).
69^3 == 9 (mod 10^2).
569^3 == 9 (mod 10^3).
569^3 == 9 (mod 10^4).
60569^3 == 9 (mod 10^5).
660569^3 == 9 (mod 10^6).
MAPLE
op([1, 3], padic:-rootp((x)^3 -9, 10, 101)); # Robert Israel, Aug 04 2019
PROG
(PARI) n=0; for(i=1, 100, m=9; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
(PARI) Vecrev(digits(truncate(-(-9+O(10^100))^(1/3)))) \\ Seiichi Manyama, Aug 04 2019
(PARI) N=100; Vecrev(digits(lift(chinese(Mod((9+O(2^N))^(1/3), 2^N), Mod((9+O(5^N))^(1/3), 5^N)))), N) \\ Seiichi Manyama, Aug 04 2019
(Ruby)
def A225406(n)
ary = [9]
a = 9
n.times{|i|
b = (a + 3 * (a ** 3 - 9)) % (10 ** (i + 2))
ary << (b - a) / (10 ** (i + 1))
a = b
}
ary
end
p A225406(100) # Seiichi Manyama, Aug 13 2019
CROSSREFS
Cf. A309600.
Digits of 10-adic integers:
A153042 ((-1/9)^(1/3));
A225409 ( (-9)^(1/3));
A225412 ( (1/9)^(1/3)).
Sequence in context: A154183 A200138 A196772 * A347330 A343947 A367709
KEYWORD
nonn,base
AUTHOR
Aswini Vaidyanathan, May 07 2013
STATUS
approved