|
|
A196772
|
|
Decimal expansion of the number c for which the curve y=1/x is tangent to the curve y=sin(x-c), and 0 < x < 2*Pi; c = Pi - sqrt(r) - arccos(r-1), where r=(1+sqrt(5))/2 (the golden ratio).
|
|
7
|
|
|
9, 6, 5, 0, 1, 6, 1, 0, 9, 7, 7, 3, 3, 4, 2, 9, 1, 0, 0, 8, 2, 9, 0, 4, 1, 2, 5, 8, 8, 0, 0, 5, 2, 6, 7, 1, 0, 5, 0, 4, 6, 6, 7, 9, 6, 5, 7, 3, 4, 0, 4, 5, 0, 4, 7, 0, 2, 3, 0, 5, 7, 5, 6, 4, 1, 8, 5, 8, 9, 6, 1, 6, 9, 8, 6, 0, 9, 5, 7, 6, 9, 1, 9, 1, 5, 4, 0, 0, 2, 8, 8, 5, 2, 1, 7, 9, 4, 1, 0, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Table of n, a(n) for n=0..99.
|
|
EXAMPLE
|
c=0.965016109773342910082904125880052671050...
|
|
MATHEMATICA
|
Plot[{Sin[x + .97], 1/x}, {x, 0, Pi}]
r = GoldenRatio; x = Sqrt[r];
c = N[Pi - x - ArcCos[r - 1], 100]
RealDigits[c] (* A196772 *)
slope = N[-1/x^2, 100]
RealDigits[slope] (* 1-r *)
|
|
CROSSREFS
|
Cf. A195625, A196767.
Sequence in context: A021916 A154183 A200138 * A225406 A347330 A343947
Adjacent sequences: A196769 A196770 A196771 * A196773 A196774 A196775
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Clark Kimberling, Oct 06 2011
|
|
STATUS
|
approved
|
|
|
|