login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225410
10-adic integer x such that x^3 = 7/9.
7
7, 4, 2, 9, 3, 3, 0, 0, 1, 6, 6, 7, 2, 0, 5, 8, 6, 3, 0, 4, 4, 6, 0, 9, 7, 1, 9, 4, 2, 6, 8, 7, 9, 6, 8, 0, 5, 7, 1, 0, 6, 6, 9, 8, 6, 4, 9, 0, 9, 8, 5, 9, 0, 5, 9, 6, 5, 2, 1, 5, 3, 4, 6, 7, 2, 4, 4, 1, 6, 3, 2, 6, 1, 4, 1, 0, 2, 7, 0, 0, 5, 4, 1, 7, 9, 6, 4, 1, 3, 2, 1, 0, 4, 6, 1, 5, 6, 1, 5, 2
OFFSET
0,1
COMMENTS
This is the 10's complement of A225401.
LINKS
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 - 7) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 13 2019
EXAMPLE
7^3 == 3 (mod 10).
47^3 == 23 (mod 10^2).
247^3 == 223 (mod 10^3).
9247^3 == 2223 (mod 10^4).
39247^3 == 22223 (mod 10^5).
339247^3 == 222223 (mod 10^6).
PROG
(PARI) n=0; for(i=1, 100, m=(2*(10^i-1)/9)+1; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
(PARI) N=100; Vecrev(digits(lift(chinese(Mod((7/9+O(2^N))^(1/3), 2^N), Mod((7/9+O(5^N))^(1/3), 5^N)))), N) \\ Seiichi Manyama, Aug 05 2019
(Ruby)
def A225410(n)
ary = [7]
a = 7
n.times{|i|
b = (a + 3 * (9 * a ** 3 - 7)) % (10 ** (i + 2))
ary << (b - a) / (10 ** (i + 1))
a = b
}
ary
end
p A225410(100) # Seiichi Manyama, Aug 13 2019
CROSSREFS
Sequence in context: A245055 A335020 A377796 * A248750 A071875 A200687
KEYWORD
nonn,base
AUTHOR
Aswini Vaidyanathan, May 07 2013
STATUS
approved