The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A071875 Decimal expansion of the eighth (of 10) decimal selvage number; the n-th digit of a decimal selvage number, x, is equal to the tenths digit of n*x. 9
 7, 4, 2, 9, 7, 4, 2, 9, 6, 4, 1, 9, 6, 4, 1, 8, 6, 3, 1, 8, 6, 3, 0, 8, 5, 3, 0, 8, 5, 2, 0, 7, 5, 2, 0, 7, 4, 2, 9, 7, 4, 2, 9, 6, 4, 1, 9, 6, 4, 1, 8, 6, 3, 1, 8, 6, 3, 0, 8, 5, 3, 0, 8, 5, 2, 0, 7, 5, 2, 0, 7, 4, 2, 9, 7, 4, 2, 9, 6, 4, 1, 9, 6, 4, 1, 8, 6, 3, 1, 8, 6, 3, 0, 8, 5, 3, 0, 8, 5, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS In other words, this constant satisfies x = Sum_{n>=0} ( floor(10*n*x) (mod 10) ) / 10^n. The eighth selvage number is equal to the complement of the third selvage number (A071791): s_8 = 1 - s_3. LINKS MathWorld, Equidistributed Sequence FORMULA a(n) = floor[10*(n*x)] (Mod 10), where x = sum{k=1..inf} a(k)/10^k. a(n) = 9 - A071791(n). EXAMPLE x=0.74297429641964186318630853085207520742974296419641... a(7) = 2 since floor(10*(7*x)) (Mod 10) = 2. The multiples of this constant x begin: 1*x = 0.7429742964196418631863085308520752074297... 2*x = 1.485948592839283726372617061704150414859... 3*x = 2.228922889258925589558925592556225622289... 4*x = 2.971897185678567452745234123408300829719... 5*x = 3.714871482098209315931542654260376037149... 6*x = 4.457845778517851179117851185112451244578... 7*x = 5.200820074937493042304159715964526452008... 8*x = 5.943794371357134905490468246816601659438... 9*x = 6.686768667776776768676776777668676866868... 10*x = 7.429742964196418631863085308520752074297... 11*x = 8.172717260616060495049393839372827281727... 12*x = 8.915691557035702358235702370224902489157... wherein the tenths place of n*x yields the n-th digit of x. MATHEMATICA k = 7; f[x_] := Floor[10*FractionalPart[x]]; Clear[xx]; xx[n_] := xx[n] = Catch[ For[x = xx[n - 1], True, x += 10^(-n), If[f[n*x] == f[10^(n - 1)*x], Throw[x]]]]; xx[1] = k/10; Scan[xx, Range[100]]; RealDigits[xx[100]][[1]] (* Jean-François Alcover, Dec 06 2012 *) Clear[a]; a[1] = 7; a[2] = 4; a[n0=3] = 2; a[_] = 0; digits = 10^(n0-1); Do[a[n] = Mod[Floor[10*n*Sum[a[k]/10^k, {k, 1, n}]], 10], {n, n0+1, digits}]; Table[a[n], {n, 1, digits}] (* Jean-François Alcover, May 12 2015 *) CROSSREFS Cf. A071789, A071790, A071791, A071792, A071792, A071873, A071874, A071876, A071877. Sequence in context: A335020 A225410 A248750 * A200687 A200121 A198348 Adjacent sequences:  A071872 A071873 A071874 * A071876 A071877 A071878 KEYWORD cons,easy,nonn,base AUTHOR Paul D. Hanna, Jun 10 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 12:51 EST 2021. Contains 349394 sequences. (Running on oeis4.)