The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A071878 G.f. D(x) satisfies: D(x) = (1 + x*D(x))*(1 + 2*x*D(x))*(1 + 3*x*D(x)). 3
 1, 6, 47, 420, 4058, 41286, 435739, 4726644, 52373294, 590247900, 6744908118, 77969430864, 910131055980, 10712886629958, 127012431301779, 1515405441505380, 18181513435560278, 219219809605566132, 2654917102081791394, 32281268283914386200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..19. FORMULA From Paul D. Hanna, Mar 01 2021: (Start) G.f.: D(x) = (1/x) * Series_Reversion( x / ((1 + x)*(1 + 2*x)*(1 + 3*x)) ). G.f. D = D(x) and related functions A = A(x), B = B(x), C = C(x), satisfy: (1.a) A = 1/((1 - 2*x*B)*(1 - 3*x*C)). (1.b) B = 1/((1 - x*A)*(1 - 3*x*C)). (1.c) C = 1/((1 - x*A)*(1 - 2*x*B)). (1.d) D = 1/((1 - x*A)*(1 - 2*x*B)*(1 - 3*x*C)). (1.e) D = sqrt(A*B*C). (2.a) A = (1 + 2*x*D)*(1 + 3*x*D). (2.b) B = (1 + x*D)*(1 + 3*x*D). (2.c) C = (1 + x*D)*(1 + 2*x*D). (2.d) D = (sqrt(24*A + 1) - 5)/(12*x) = (sqrt(12*B + 4) - 4)/(6*x) = (sqrt(8*C + 1) - 3)/(4*x). (3.a) A = B/(1 - x*B) = C/(1 - 2*x*C) = D/(1 + x*D). (3.b) B = C/(1 - x*C) = A/(1 + x*A) = D/(1 + 2*x*D). (3.c) C = A/(1 + 2*x*A) = B/(1 + x*B) = D/(1 + 3*x*D). (3.d) D = A/(1 - x*A) = B/(1 - 2*x*B) = C/(1 - 3*x*C). (3.e) 1 = (1 + x*A)*(1 - x*B) = (1 + 2*x*A)*(1 - 2*x*C) = (1 + x*B)*(1 - x*C). (3.f) 1 = (1 - x*A)*(1 + x*D) = (1 - 2*x*B)*(1 + 2*x*D) = (1 - 3*x*C)*(1 + 3*x*D). (4.a) A = (1 + x*A)*(1 + 2*x*A)/(1 - x*A)^2. (4.b) B = (1 - x^2*B^2)/(1 - 2*x*B)^2. (4.c) C = (1 - x*C)*(1 - 2*x*C)/(1 - 3*x*C)^2. (4.d) D = (1 + x*D)*(1 + 2*x*D)*(1 + 3*x*D). (5.a) A = (1/x)*Series_Reversion( x*(1 - x)^2 / ((1 + x)*(1 + 2*x)) ). (5.b) B = (1/x)*Series_Reversion( x*(1 - 2*x)^2 / (1 - x^2) ). (5.c) C = (1/x)*Series_Reversion( x*(1 - 3*x)^2 / ((1 - x)*(1 - 2*x)) ). (5.d) D = (1/x)*Series_Reversion( x / ((1 + x)*(1 + 2*x)*(1 + 3*x)) ). (End) a(n) ~ sqrt((3*s + 11*r*s^2 + 9*r^2*s^3)/(Pi*(22 + 36*r*s))) / (n^(3/2)*r^(n + 1/2)), where r = 4 - sqrt(503/3) * cos(arctan(359*sqrt(359/3)/5196)/3)/2 + sqrt(503) * sin(arctan(359*sqrt(359/3)/5196)/3)/2 = 0.07627811703169412709742160523783922642030319519275992338... and s = 3.4807233253858558164460728604043678335213362043902693560668... are positive real roots of the system of equations (1 + r*s)*(1 + 2*r*s)*(1 + 3*r*s) = s, 2*r*(3 + 11*r*s + 9*r^2*s^2) = 1. - Vaclav Kotesovec, Mar 02 2021 EXAMPLE G.f. D(x) 1 + 6*x + 47*x^2 + 420*x^3 + 4058*x^4 + 41286*x^5 + 435739*x^6 + 4726644*x^7 + 52373294*x^8 + 590247900*x^9 + 6744908118*x^10 + ... such that D(x) = (1 + x*D(x))*(1 + 2*x*D(x))*(1 + 3*x*D(x)) and also D(x) = sqrt(A(x)*B(x)*C(x)) where A(x) = 1 + 5*x + 36*x^2 + 307*x^3 + 2880*x^4 + 28714*x^5 + 298620*x^6 + 3203183*x^7 + 35181792*x^8 + 393697030*x^9 + 4472679816*x^10 + ... B(x) = 1 + 4*x + 27*x^2 + 224*x^3 + 2070*x^4 + 20444*x^5 + 211239*x^6 + 2255200*x^7 + 24680862*x^8 + 275408456*x^9 + 3121711758*x^10 + ... C(x) = 1 + 3*x + 20*x^2 + 165*x^3 + 1520*x^4 + 14982*x^5 + 154588*x^6 + 1648713*x^7 + 18029456*x^8 + 201063402*x^9 + 2277890472*x^10 + ... RELATED SERIES. D(x)^2 = A(x)*B(x)*C(x) = 1 + 12*x + 130*x^2 + 1404*x^3 + 15365*x^4 + 170748*x^5 + 1924762*x^6 + 21971760*x^7 + 253573386*x^8 + 2954377800*x^9 + ... B(x)*C(x) = D(x) + x*D(x)^2 = 1 + 7*x + 59*x^2 + 550*x^3 + 5462*x^4 + 56651*x^5 + 606487*x^6 + 6651406*x^7 + 74345054*x^8 + ... A(x)*C(x) = D(x) + 2*x*D(x)^2 = 1 + 8*x + 71*x^2 + 680*x^3 + 6866*x^4 + 72016*x^5 + 777235*x^6 + 8576168*x^7 + 96316814*x^8 + ... A(x)*B(x) = D(x) + 3*x*D(x)^2 = 1 + 9*x + 83*x^2 + 810*x^3 + 8270*x^4 + 87381*x^5 + 947983*x^6 + 10500930*x^7 + 118288574*x^8 + ... MATHEMATICA CoefficientList[1/x * InverseSeries[Series[x/((1 + x)*(1 + 2*x)*(1 + 3*x)), {x, 0, 20}], x], x] (* Vaclav Kotesovec, Mar 02 2021 *) PROG (PARI) {d(n) = my(A=1, B=1, C=1, D=1); for(i=1, n, A = 1/((1-2*x*B)*(1-3*x*C) +x*O(x^n)); B = 1/((1-1*x*A)*(1-3*x*C) +x*O(x^n)); C = 1/((1-1*x*A)*(1-2*x*B) +x*O(x^n)); D = sqrt(A*B*C)); polcoeff(D, n)} for(n=0, 30, print1(c(n), ", ")) \\ Paul D. Hanna, Mar 01 2021 (PARI) /* By Series Reversion: */ {d(n) = my(D = 1/x*serreverse( x/((1 + x)*(1 + 2*x)*(1 + 3*x) +x*O(x^n)))); polcoeff(D, n)} for(n=0, 11, print1(d(n), ", ")) \\ Paul D. Hanna, Mar 01 2021 CROSSREFS Cf. A341961 (A(x)), A341962 (B(x)), A341963 (C(x)). Sequence in context: A015553 A291028 A341927 * A369502 A364748 A365186 Adjacent sequences: A071875 A071876 A071877 * A071879 A071880 A071881 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 10 2002 EXTENSIONS Entry revised by Paul D. Hanna, Mar 01 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 13:47 EDT 2024. Contains 373445 sequences. (Running on oeis4.)