login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071878
G.f. D(x) satisfies: D(x) = (1 + x*D(x))*(1 + 2*x*D(x))*(1 + 3*x*D(x)).
4
1, 6, 47, 420, 4058, 41286, 435739, 4726644, 52373294, 590247900, 6744908118, 77969430864, 910131055980, 10712886629958, 127012431301779, 1515405441505380, 18181513435560278, 219219809605566132, 2654917102081791394, 32281268283914386200
OFFSET
0,2
LINKS
FORMULA
From Paul D. Hanna, Mar 01 2021: (Start)
G.f.: D(x) = (1/x) * Series_Reversion( x / ((1 + x)*(1 + 2*x)*(1 + 3*x)) ).
G.f. D = D(x) and related functions A = A(x), B = B(x), C = C(x), satisfy:
(1.a) A = 1/((1 - 2*x*B)*(1 - 3*x*C)).
(1.b) B = 1/((1 - x*A)*(1 - 3*x*C)).
(1.c) C = 1/((1 - x*A)*(1 - 2*x*B)).
(1.d) D = 1/((1 - x*A)*(1 - 2*x*B)*(1 - 3*x*C)).
(1.e) D = sqrt(A*B*C).
(2.a) A = (1 + 2*x*D)*(1 + 3*x*D).
(2.b) B = (1 + x*D)*(1 + 3*x*D).
(2.c) C = (1 + x*D)*(1 + 2*x*D).
(2.d) D = (sqrt(24*A + 1) - 5)/(12*x) = (sqrt(12*B + 4) - 4)/(6*x) = (sqrt(8*C + 1) - 3)/(4*x).
(3.a) A = B/(1 - x*B) = C/(1 - 2*x*C) = D/(1 + x*D).
(3.b) B = C/(1 - x*C) = A/(1 + x*A) = D/(1 + 2*x*D).
(3.c) C = A/(1 + 2*x*A) = B/(1 + x*B) = D/(1 + 3*x*D).
(3.d) D = A/(1 - x*A) = B/(1 - 2*x*B) = C/(1 - 3*x*C).
(3.e) 1 = (1 + x*A)*(1 - x*B) = (1 + 2*x*A)*(1 - 2*x*C) = (1 + x*B)*(1 - x*C).
(3.f) 1 = (1 - x*A)*(1 + x*D) = (1 - 2*x*B)*(1 + 2*x*D) = (1 - 3*x*C)*(1 + 3*x*D).
(4.a) A = (1 + x*A)*(1 + 2*x*A)/(1 - x*A)^2.
(4.b) B = (1 - x^2*B^2)/(1 - 2*x*B)^2.
(4.c) C = (1 - x*C)*(1 - 2*x*C)/(1 - 3*x*C)^2.
(4.d) D = (1 + x*D)*(1 + 2*x*D)*(1 + 3*x*D).
(5.a) A = (1/x)*Series_Reversion( x*(1 - x)^2 / ((1 + x)*(1 + 2*x)) ).
(5.b) B = (1/x)*Series_Reversion( x*(1 - 2*x)^2 / (1 - x^2) ).
(5.c) C = (1/x)*Series_Reversion( x*(1 - 3*x)^2 / ((1 - x)*(1 - 2*x)) ).
(5.d) D = (1/x)*Series_Reversion( x / ((1 + x)*(1 + 2*x)*(1 + 3*x)) ).
(End)
a(n) ~ sqrt((3*s + 11*r*s^2 + 9*r^2*s^3)/(Pi*(22 + 36*r*s))) / (n^(3/2)*r^(n + 1/2)), where r = 4 - sqrt(503/3) * cos(arctan(359*sqrt(359/3)/5196)/3)/2 + sqrt(503) * sin(arctan(359*sqrt(359/3)/5196)/3)/2 = 0.07627811703169412709742160523783922642030319519275992338... and s = 3.4807233253858558164460728604043678335213362043902693560668... are positive real roots of the system of equations (1 + r*s)*(1 + 2*r*s)*(1 + 3*r*s) = s, 2*r*(3 + 11*r*s + 9*r^2*s^2) = 1. - Vaclav Kotesovec, Mar 02 2021
EXAMPLE
G.f. D(x) 1 + 6*x + 47*x^2 + 420*x^3 + 4058*x^4 + 41286*x^5 + 435739*x^6 + 4726644*x^7 + 52373294*x^8 + 590247900*x^9 + 6744908118*x^10 + ...
such that D(x) = (1 + x*D(x))*(1 + 2*x*D(x))*(1 + 3*x*D(x))
and also D(x) = sqrt(A(x)*B(x)*C(x)) where
A(x) = 1 + 5*x + 36*x^2 + 307*x^3 + 2880*x^4 + 28714*x^5 + 298620*x^6 + 3203183*x^7 + 35181792*x^8 + 393697030*x^9 + 4472679816*x^10 + ...
B(x) = 1 + 4*x + 27*x^2 + 224*x^3 + 2070*x^4 + 20444*x^5 + 211239*x^6 + 2255200*x^7 + 24680862*x^8 + 275408456*x^9 + 3121711758*x^10 + ...
C(x) = 1 + 3*x + 20*x^2 + 165*x^3 + 1520*x^4 + 14982*x^5 + 154588*x^6 + 1648713*x^7 + 18029456*x^8 + 201063402*x^9 + 2277890472*x^10 + ...
RELATED SERIES.
D(x)^2 = A(x)*B(x)*C(x) = 1 + 12*x + 130*x^2 + 1404*x^3 + 15365*x^4 + 170748*x^5 + 1924762*x^6 + 21971760*x^7 + 253573386*x^8 + 2954377800*x^9 + ...
B(x)*C(x) = D(x) + x*D(x)^2 = 1 + 7*x + 59*x^2 + 550*x^3 + 5462*x^4 + 56651*x^5 + 606487*x^6 + 6651406*x^7 + 74345054*x^8 + ...
A(x)*C(x) = D(x) + 2*x*D(x)^2 = 1 + 8*x + 71*x^2 + 680*x^3 + 6866*x^4 + 72016*x^5 + 777235*x^6 + 8576168*x^7 + 96316814*x^8 + ...
A(x)*B(x) = D(x) + 3*x*D(x)^2 = 1 + 9*x + 83*x^2 + 810*x^3 + 8270*x^4 + 87381*x^5 + 947983*x^6 + 10500930*x^7 + 118288574*x^8 + ...
MATHEMATICA
CoefficientList[1/x * InverseSeries[Series[x/((1 + x)*(1 + 2*x)*(1 + 3*x)), {x, 0, 20}], x], x] (* Vaclav Kotesovec, Mar 02 2021 *)
PROG
(PARI) {d(n) = my(A=1, B=1, C=1, D=1); for(i=1, n,
A = 1/((1-2*x*B)*(1-3*x*C) +x*O(x^n));
B = 1/((1-1*x*A)*(1-3*x*C) +x*O(x^n));
C = 1/((1-1*x*A)*(1-2*x*B) +x*O(x^n));
D = sqrt(A*B*C)); polcoeff(D, n)}
for(n=0, 30, print1(c(n), ", ")) \\ Paul D. Hanna, Mar 01 2021
(PARI) /* By Series Reversion: */
{d(n) = my(D = 1/x*serreverse( x/((1 + x)*(1 + 2*x)*(1 + 3*x) +x*O(x^n)))); polcoeff(D, n)}
for(n=0, 11, print1(d(n), ", ")) \\ Paul D. Hanna, Mar 01 2021
CROSSREFS
Cf. A341961 (A(x)), A341962 (B(x)), A341963 (C(x)).
Sequence in context: A015553 A291028 A341927 * A369502 A364748 A365186
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 10 2002
EXTENSIONS
Entry revised by Paul D. Hanna, Mar 01 2021
STATUS
approved