login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. D(x) satisfies: D(x) = (1 + x*D(x))*(1 + 2*x*D(x))*(1 + 3*x*D(x)).
4

%I #17 Jul 15 2024 06:11:34

%S 1,6,47,420,4058,41286,435739,4726644,52373294,590247900,6744908118,

%T 77969430864,910131055980,10712886629958,127012431301779,

%U 1515405441505380,18181513435560278,219219809605566132,2654917102081791394,32281268283914386200

%N G.f. D(x) satisfies: D(x) = (1 + x*D(x))*(1 + 2*x*D(x))*(1 + 3*x*D(x)).

%H Paul D. Hanna, <a href="/A071878/b071878.txt">Table of n, a(n) for n = 0..520</a>

%F From _Paul D. Hanna_, Mar 01 2021: (Start)

%F G.f.: D(x) = (1/x) * Series_Reversion( x / ((1 + x)*(1 + 2*x)*(1 + 3*x)) ).

%F G.f. D = D(x) and related functions A = A(x), B = B(x), C = C(x), satisfy:

%F (1.a) A = 1/((1 - 2*x*B)*(1 - 3*x*C)).

%F (1.b) B = 1/((1 - x*A)*(1 - 3*x*C)).

%F (1.c) C = 1/((1 - x*A)*(1 - 2*x*B)).

%F (1.d) D = 1/((1 - x*A)*(1 - 2*x*B)*(1 - 3*x*C)).

%F (1.e) D = sqrt(A*B*C).

%F (2.a) A = (1 + 2*x*D)*(1 + 3*x*D).

%F (2.b) B = (1 + x*D)*(1 + 3*x*D).

%F (2.c) C = (1 + x*D)*(1 + 2*x*D).

%F (2.d) D = (sqrt(24*A + 1) - 5)/(12*x) = (sqrt(12*B + 4) - 4)/(6*x) = (sqrt(8*C + 1) - 3)/(4*x).

%F (3.a) A = B/(1 - x*B) = C/(1 - 2*x*C) = D/(1 + x*D).

%F (3.b) B = C/(1 - x*C) = A/(1 + x*A) = D/(1 + 2*x*D).

%F (3.c) C = A/(1 + 2*x*A) = B/(1 + x*B) = D/(1 + 3*x*D).

%F (3.d) D = A/(1 - x*A) = B/(1 - 2*x*B) = C/(1 - 3*x*C).

%F (3.e) 1 = (1 + x*A)*(1 - x*B) = (1 + 2*x*A)*(1 - 2*x*C) = (1 + x*B)*(1 - x*C).

%F (3.f) 1 = (1 - x*A)*(1 + x*D) = (1 - 2*x*B)*(1 + 2*x*D) = (1 - 3*x*C)*(1 + 3*x*D).

%F (4.a) A = (1 + x*A)*(1 + 2*x*A)/(1 - x*A)^2.

%F (4.b) B = (1 - x^2*B^2)/(1 - 2*x*B)^2.

%F (4.c) C = (1 - x*C)*(1 - 2*x*C)/(1 - 3*x*C)^2.

%F (4.d) D = (1 + x*D)*(1 + 2*x*D)*(1 + 3*x*D).

%F (5.a) A = (1/x)*Series_Reversion( x*(1 - x)^2 / ((1 + x)*(1 + 2*x)) ).

%F (5.b) B = (1/x)*Series_Reversion( x*(1 - 2*x)^2 / (1 - x^2) ).

%F (5.c) C = (1/x)*Series_Reversion( x*(1 - 3*x)^2 / ((1 - x)*(1 - 2*x)) ).

%F (5.d) D = (1/x)*Series_Reversion( x / ((1 + x)*(1 + 2*x)*(1 + 3*x)) ).

%F (End)

%F a(n) ~ sqrt((3*s + 11*r*s^2 + 9*r^2*s^3)/(Pi*(22 + 36*r*s))) / (n^(3/2)*r^(n + 1/2)), where r = 4 - sqrt(503/3) * cos(arctan(359*sqrt(359/3)/5196)/3)/2 + sqrt(503) * sin(arctan(359*sqrt(359/3)/5196)/3)/2 = 0.07627811703169412709742160523783922642030319519275992338... and s = 3.4807233253858558164460728604043678335213362043902693560668... are positive real roots of the system of equations (1 + r*s)*(1 + 2*r*s)*(1 + 3*r*s) = s, 2*r*(3 + 11*r*s + 9*r^2*s^2) = 1. - _Vaclav Kotesovec_, Mar 02 2021

%e G.f. D(x) 1 + 6*x + 47*x^2 + 420*x^3 + 4058*x^4 + 41286*x^5 + 435739*x^6 + 4726644*x^7 + 52373294*x^8 + 590247900*x^9 + 6744908118*x^10 + ...

%e such that D(x) = (1 + x*D(x))*(1 + 2*x*D(x))*(1 + 3*x*D(x))

%e and also D(x) = sqrt(A(x)*B(x)*C(x)) where

%e A(x) = 1 + 5*x + 36*x^2 + 307*x^3 + 2880*x^4 + 28714*x^5 + 298620*x^6 + 3203183*x^7 + 35181792*x^8 + 393697030*x^9 + 4472679816*x^10 + ...

%e B(x) = 1 + 4*x + 27*x^2 + 224*x^3 + 2070*x^4 + 20444*x^5 + 211239*x^6 + 2255200*x^7 + 24680862*x^8 + 275408456*x^9 + 3121711758*x^10 + ...

%e C(x) = 1 + 3*x + 20*x^2 + 165*x^3 + 1520*x^4 + 14982*x^5 + 154588*x^6 + 1648713*x^7 + 18029456*x^8 + 201063402*x^9 + 2277890472*x^10 + ...

%e RELATED SERIES.

%e D(x)^2 = A(x)*B(x)*C(x) = 1 + 12*x + 130*x^2 + 1404*x^3 + 15365*x^4 + 170748*x^5 + 1924762*x^6 + 21971760*x^7 + 253573386*x^8 + 2954377800*x^9 + ...

%e B(x)*C(x) = D(x) + x*D(x)^2 = 1 + 7*x + 59*x^2 + 550*x^3 + 5462*x^4 + 56651*x^5 + 606487*x^6 + 6651406*x^7 + 74345054*x^8 + ...

%e A(x)*C(x) = D(x) + 2*x*D(x)^2 = 1 + 8*x + 71*x^2 + 680*x^3 + 6866*x^4 + 72016*x^5 + 777235*x^6 + 8576168*x^7 + 96316814*x^8 + ...

%e A(x)*B(x) = D(x) + 3*x*D(x)^2 = 1 + 9*x + 83*x^2 + 810*x^3 + 8270*x^4 + 87381*x^5 + 947983*x^6 + 10500930*x^7 + 118288574*x^8 + ...

%t CoefficientList[1/x * InverseSeries[Series[x/((1 + x)*(1 + 2*x)*(1 + 3*x)), {x, 0, 20}], x], x] (* _Vaclav Kotesovec_, Mar 02 2021 *)

%o (PARI) {d(n) = my(A=1, B=1, C=1, D=1); for(i=1, n,

%o A = 1/((1-2*x*B)*(1-3*x*C) +x*O(x^n));

%o B = 1/((1-1*x*A)*(1-3*x*C) +x*O(x^n));

%o C = 1/((1-1*x*A)*(1-2*x*B) +x*O(x^n));

%o D = sqrt(A*B*C)); polcoeff(D, n)}

%o for(n=0, 30, print1(c(n), ", ")) \\ _Paul D. Hanna_, Mar 01 2021

%o (PARI) /* By Series Reversion: */

%o {d(n) = my(D = 1/x*serreverse( x/((1 + x)*(1 + 2*x)*(1 + 3*x) +x*O(x^n)))); polcoeff(D,n)}

%o for(n=0,11, print1(d(n),", ")) \\ _Paul D. Hanna_, Mar 01 2021

%Y Cf. A341961 (A(x)), A341962 (B(x)), A341963 (C(x)).

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jun 10 2002

%E Entry revised by _Paul D. Hanna_, Mar 01 2021