The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071877 Decimal expansion of the tenth (of 10) decimal selvage number; the n-th digit of a decimal selvage number, x, is equal to the tenths digit of n*x. 9
8, 7, 6, 5, 3, 2, 1, 0, 8, 7, 6, 5, 3, 2, 1, 0, 9, 7, 6, 5, 4, 2, 1, 0, 9, 7, 6, 5, 4, 2, 1, 0, 9, 8, 6, 5, 4, 3, 1, 0, 9, 8, 6, 5, 4, 3, 1, 0, 9, 8, 7, 5, 4, 3, 2, 0, 9, 8, 7, 5, 4, 3, 2, 0, 9, 8, 7, 6, 4, 3, 2, 1, 9, 8, 7, 6, 4, 3, 2, 1, 9, 8, 7, 6, 5, 3, 2, 1, 0, 8, 7, 6, 5, 3, 2, 1, 0, 9, 7, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
In other words, this constant satisfies x = Sum_{n>=0} ( floor(10*n*x) (mod 10) ) / 10^n.
The tenth selvage number is equal to the complement of the first selvage number (A071789): s_10 = 1 - s_1.
LINKS
FORMULA
a(n) = floor[10*(n*x)] (Mod 10), where x = sum{k=1..inf} a(k)/10^k.
a(n) = 9 - A071789(n).
EXAMPLE
x=0.87653210876532109765421097654210986543109865431098...
a(7) = 1 since floor(10*(7*x)) (Mod 10) = 1.
The multiples of this constant x begin:
1*x = 0.8765321087653210976542109765421098654311...
2*x = 1.753064217530642195308421953084219730862...
3*x = 2.629596326295963292962632929626329596293...
4*x = 3.506128435061284390616843906168439461724...
5*x = 4.382660543826605488271054882710549327155...
6*x = 5.259192652591926585925265859252659192587...
7*x = 6.135724761357247683579476835794769058018...
8*x = 7.012256870122568781233687812336878923449...
9*x = 7.888788978887889878887898788878988788880...
10*x = 8.765321087653210976542109765421098654311...
11*x = 9.641853196418532074196320741963208519742...
12*x = 10.51838530518385317185053171850531838517...
wherein the tenths place of n*x yields the n-th digit of x.
MATHEMATICA
k = 8; f[x_] := Floor[10*FractionalPart[x]]; Clear[xx]; xx[n_] := xx[n] = Catch[ For[x = xx[n - 1], True, x += 10^(-n), If[f[n*x] == f[10^(n - 1)*x], Throw[x]]]]; xx[1] = k/10; Scan[xx, Range[100]]; RealDigits[xx[100]][[1]] (* Jean-François Alcover, Dec 06 2012 *)
Clear[a]; a[1] = 8; a[2] = 7; a[n0=3] = 6; a[_] = 0; digits = 10^(n0-1); Do[a[n] = Mod[Floor[10*n*Sum[a[k]/10^k, {k, 1, n}]], 10], {n, n0+1, digits}]; Table[a[n], {n, 1, digits}] (* Jean-François Alcover, May 12 2015 *)
CROSSREFS
Sequence in context: A200598 A021846 A201579 * A138472 A022964 A023450
KEYWORD
cons,easy,nonn,base
AUTHOR
Paul D. Hanna, Jun 10 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 13:47 EDT 2024. Contains 373445 sequences. (Running on oeis4.)