login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071874
Decimal expansion of the seventh (of 10) decimal selvage number; the n-th digit of a decimal selvage number, x, is equal to the tenths digit of n*x.
9
6, 2, 8, 5, 1, 7, 3, 0, 6, 2, 9, 5, 1, 7, 4, 0, 6, 3, 9, 5, 1, 8, 4, 0, 7, 3, 9, 5, 2, 8, 4, 1, 7, 3, 9, 6, 2, 8, 5, 1, 7, 3, 0, 6, 2, 9, 5, 1, 7, 4, 0, 6, 3, 9, 5, 1, 8, 4, 0, 7, 3, 9, 5, 2, 8, 4, 1, 7, 3, 9, 6, 2, 8, 5, 1, 7, 3, 0, 6, 2, 9, 5, 1, 7, 4, 0, 6, 3, 9, 5, 1, 8, 4, 0, 7, 3, 9, 5, 2, 8
OFFSET
0,1
COMMENTS
In other words, this constant satisfies x = Sum_{n>=0} ( floor(10*n*x) (mod 10) ) / 10^n.
The seventh selvage number is equal to the complement of the fourth selvage number (A071792): s_7 = 1 - s_4.
FORMULA
a(n) = floor[10*(n*x)] (Mod 10), where x = sum{k=1..inf} a(k)/10^k.
a(n) = 9 - A071792(n).
EXAMPLE
x=0.62851730629517406395184073952841739628517306295174...
a(7) = 3 since floor(10*(7*x)) (Mod 10) = 3.
The multiples of this constant x begin:
1*x = 0.6285173062951740639518407395284173962852...
2*x = 1.257034612590348127903681479056834792570...
3*x = 1.885551918885522191855522218585252188856...
4*x = 2.514069225180696255807362958113669585141...
5*x = 3.142586531475870319759203697642086981426...
6*x = 3.771103837771044383711044437170504377711...
7*x = 4.399621144066218447662885176698921773996...
8*x = 5.028138450361392511614725916227339170281...
9*x = 5.656655756656566575566566655755756566567...
10*x = 6.285173062951740639518407395284173962852...
11*x = 6.913690369246914703470248134812591359137...
12*x = 7.542207675542088767422088874341008755422...
wherein the tenths place of n*x yields the n-th digit of x.
MATHEMATICA
k = 6; f[x_] := Floor[10*FractionalPart[x]]; Clear[xx]; xx[n_] := xx[n] = Catch[ For[x = xx[n - 1], True, x += 10^(-n), If[f[n*x] == f[10^(n - 1)*x], Throw[x]]]]; xx[1] = k/10; Scan[xx, Range[100]]; RealDigits[xx[100]][[1]] (* Jean-François Alcover, Dec 06 2012 *)
Clear[a]; a[1] = 6; a[2] = 2; a[n0=3] = 8; a[_] = 0; digits = 10^(n0-1); Do[a[n] = Mod[Floor[10*n*Sum[a[k]/10^k, {k, 1, n}]], 10], {n, n0+1, digits}]; Table[a[n], {n, 1, digits}] (* Jean-François Alcover, May 12 2015 *)
KEYWORD
cons,easy,nonn,base
AUTHOR
Paul D. Hanna, Jun 10 2002
STATUS
approved