login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062771
Order of automorphism group of the group C_n X C_2 (where C_n is the cyclic group with n elements).
3
1, 6, 2, 8, 4, 12, 6, 16, 6, 24, 10, 16, 12, 36, 8, 32, 16, 36, 18, 32, 12, 60, 22, 32, 20, 72, 18, 48, 28, 48, 30, 64, 20, 96, 24, 48, 36, 108, 24, 64, 40, 72, 42, 80, 24, 132, 46, 64, 42, 120, 32, 96, 52, 108, 40, 96, 36, 168, 58, 64, 60, 180, 36, 128, 48, 120, 66, 128, 44
OFFSET
1,2
LINKS
FORMULA
For odd n: a(n) = phi(n) (sequence A000010).
Conjecture: a(n) = 6*phi(n) if n mod 4 = 2 and a(n) = 4*phi(n) if n mod 4 = 0. - Vladeta Jovovic, Jul 20 2001
Conjecture confirmed. - Christian G. Bower, May 20 2005
Multiplicative with a(2) = 6, a(2^e) = 2^(e+1), e>1, a(p^e) = (p-1)*p^(e-1), p>2. - Christian G. Bower, May 18 2005
Sum_{k=1..n} a(k) ~ c * n^2, where c = 7/Pi^2 = 0.709248... . - Amiram Eldar, Oct 30 2022
Dirichlet g.f.: (zeta(s-1)/zeta(s))*((2^s-4/2^s+4)/(2^s-1)). - Amiram Eldar, Dec 30 2022
MATHEMATICA
a[n_] := Switch[Mod[n, 4], 0, 4, 2, 6, _, 1]*EulerPhi[n];
Array[a, 69] (* Jean-François Alcover, Apr 19 2018 *)
PROG
(PARI) a(n)=my(p=eulerphi(n)); if(n%2==1, p, if(n%4==2, 6*p, 4*p)); \\ Joerg Arndt, Sep 09 2020
CROSSREFS
Cf. A000010.
Sequence in context: A082577 A098686 A079718 * A249919 A254868 A071874
KEYWORD
nonn,easy,mult
AUTHOR
Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 18 2001
EXTENSIONS
More terms from Christian G. Bower, May 20 2005
STATUS
approved