login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Order of automorphism group of the group C_n X C_2 (where C_n is the cyclic group with n elements).
3

%I #30 Dec 30 2022 03:55:01

%S 1,6,2,8,4,12,6,16,6,24,10,16,12,36,8,32,16,36,18,32,12,60,22,32,20,

%T 72,18,48,28,48,30,64,20,96,24,48,36,108,24,64,40,72,42,80,24,132,46,

%U 64,42,120,32,96,52,108,40,96,36,168,58,64,60,180,36,128,48,120,66,128,44

%N Order of automorphism group of the group C_n X C_2 (where C_n is the cyclic group with n elements).

%H David A. Corneth, <a href="/A062771/b062771.txt">Table of n, a(n) for n = 1..10000</a>

%F For odd n: a(n) = phi(n) (sequence A000010).

%F Conjecture: a(n) = 6*phi(n) if n mod 4 = 2 and a(n) = 4*phi(n) if n mod 4 = 0. - _Vladeta Jovovic_, Jul 20 2001

%F Conjecture confirmed. - _Christian G. Bower_, May 20 2005

%F Multiplicative with a(2) = 6, a(2^e) = 2^(e+1), e>1, a(p^e) = (p-1)*p^(e-1), p>2. - _Christian G. Bower_, May 18 2005

%F Sum_{k=1..n} a(k) ~ c * n^2, where c = 7/Pi^2 = 0.709248... . - _Amiram Eldar_, Oct 30 2022

%F Dirichlet g.f.: (zeta(s-1)/zeta(s))*((2^s-4/2^s+4)/(2^s-1)). - _Amiram Eldar_, Dec 30 2022

%t a[n_] := Switch[Mod[n, 4], 0, 4, 2, 6, _, 1]*EulerPhi[n];

%t Array[a, 69] (* _Jean-François Alcover_, Apr 19 2018 *)

%o (PARI) a(n)=my(p=eulerphi(n)); if(n%2==1, p, if(n%4==2,6*p,4*p)); \\ _Joerg Arndt_, Sep 09 2020

%Y Cf. A000010.

%K nonn,easy,mult

%O 1,2

%A Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 18 2001

%E More terms from _Christian G. Bower_, May 20 2005