login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098686 Decimal expansion of Sum_{n>0} n/(n^n). 4
1, 6, 2, 8, 4, 7, 3, 7, 1, 2, 9, 0, 1, 5, 8, 4, 4, 4, 7, 0, 5, 5, 8, 8, 9, 1, 4, 3, 2, 6, 1, 8, 8, 3, 0, 3, 1, 6, 5, 0, 5, 4, 0, 3, 1, 0, 9, 5, 4, 6, 2, 1, 4, 1, 6, 4, 7, 4, 1, 3, 6, 4, 3, 0, 0, 9, 2, 3, 8, 5, 9, 7, 0, 5, 1, 8, 1, 1, 9, 8, 0, 4, 8, 6, 4, 3, 2, 6, 4, 4, 0, 3, 1, 2, 9, 6, 2, 0, 5, 3, 4, 3, 6, 5, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

From Peter Bala, Oct 17 2019: (Start)

Equals 1 + Integral_{x = 0..1} x/x^x dx. More generally, for k = 0,1,2,..., Sum_{n >= k+1} n^k/n^n = Integral_{x = 0..1} x^k/x^x dx.

Also equals the double integral Integral_{x = 0..1, y = 0..1} (1 + x*y)/(x*y)^(x*y) dx dy. Cf. A073009. (End)

LINKS

Table of n, a(n) for n=1..105.

EXAMPLE

1.62847371290158444705588914326188303165054031095462141647413643009...

MAPLE

sum(n/(n^n), n=0..infinity);

MATHEMATICA

s = 0; Do[s = N[s + n/n^n, 128], {n, 62}]; RealDigits[s, 10, 111][[1]] (* Robert G. Wilson v, Nov 03 2004 *)

PROG

(PARI) suminf(n=1, 1/n^(n-1)) \\ Michel Marcus, Oct 21 2019

CROSSREFS

Cf. A001113, A013661, A073009.

Sequence in context: A031259 A059629 A082577 * A079718 A062771 A249919

Adjacent sequences:  A098683 A098684 A098685 * A098687 A098688 A098689

KEYWORD

cons,nonn

AUTHOR

Joseph Biberstine (jrbibers(AT)indiana.edu), Oct 27 2004

EXTENSIONS

More terms from Robert G. Wilson v, Nov 03 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 17:21 EDT 2021. Contains 348065 sequences. (Running on oeis4.)