login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098686
Decimal expansion of Sum_{n >= 1} n/(n^n).
7
1, 6, 2, 8, 4, 7, 3, 7, 1, 2, 9, 0, 1, 5, 8, 4, 4, 4, 7, 0, 5, 5, 8, 8, 9, 1, 4, 3, 2, 6, 1, 8, 8, 3, 0, 3, 1, 6, 5, 0, 5, 4, 0, 3, 1, 0, 9, 5, 4, 6, 2, 1, 4, 1, 6, 4, 7, 4, 1, 3, 6, 4, 3, 0, 0, 9, 2, 3, 8, 5, 9, 7, 0, 5, 1, 8, 1, 1, 9, 8, 0, 4, 8, 6, 4, 3, 2, 6, 4, 4, 0, 3, 1, 2, 9, 6, 2, 0, 5, 3, 4, 3, 6, 5, 2
OFFSET
1,2
COMMENTS
From Peter Bala, Oct 17 2019: (Start)
Equals 1 + Integral_{x = 0..1} x/x^x dx. More generally, for k = 0,1,2,..., Sum_{n >= k+1} n^k/n^n = Integral_{x = 0..1} x^k/x^x dx.
Also equals the double integral Integral_{x = 0..1, y = 0..1} (1 + x*y)/ (x*y)^(x*y) dx dy. Cf. A073009. (End)
Equals Integral_{x = 0..1} (1 - x*log(x))/x^x dx. - Peter Bala, Jul 21 2022
From Peter Bala, Nov 02 2022: (Start)
Equals Integral_{x = 0..1} (1 + x*log(x)^2)/x^x dx.
Equals the double integral Integral_{x = 0..1, y = 0..1} (x*y*log(x*y) - 1)/( (x*y)^(x*y) * log(x*y) ) dx dy and also equals 1 - Integral_{x = 0..1, y = 0..1} x*y/( (x*y)^(x*y) * log(x*y) ) dx dy by Glasser, Theorem 1. (End)
LINKS
M. L. Glasser, A note on Beukers's and related integrals, Amer. Math. Monthly 126(4) (2019), 361-363.
EXAMPLE
1.62847371290158444705588914326188303165054031095462141647413643009...
MAPLE
evalf(add(n/(n^n), n = 0..65), 100); # Peter Bala, Nov 02 2022
MATHEMATICA
s = 0; Do[s = N[s + n/n^n, 128], {n, 62}]; RealDigits[s, 10, 111][[1]] (* Robert G. Wilson v, Nov 03 2004 *)
PROG
(PARI) suminf(n=1, 1/n^(n-1)) \\ Michel Marcus, Oct 21 2019
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Oct 27 2004
EXTENSIONS
More terms from Robert G. Wilson v, Nov 03 2004
STATUS
approved