OFFSET
1,2
COMMENTS
From Peter Bala, Oct 17 2019: (Start)
Equals 1 + Integral_{x = 0..1} x/x^x dx. More generally, for k = 0,1,2,..., Sum_{n >= k+1} n^k/n^n = Integral_{x = 0..1} x^k/x^x dx.
Also equals the double integral Integral_{x = 0..1, y = 0..1} (1 + x*y)/ (x*y)^(x*y) dx dy. Cf. A073009. (End)
Equals Integral_{x = 0..1} (1 - x*log(x))/x^x dx. - Peter Bala, Jul 21 2022
From Peter Bala, Nov 02 2022: (Start)
Equals Integral_{x = 0..1} (1 + x*log(x)^2)/x^x dx.
Equals the double integral Integral_{x = 0..1, y = 0..1} (x*y*log(x*y) - 1)/( (x*y)^(x*y) * log(x*y) ) dx dy and also equals 1 - Integral_{x = 0..1, y = 0..1} x*y/( (x*y)^(x*y) * log(x*y) ) dx dy by Glasser, Theorem 1. (End)
LINKS
M. L. Glasser, A note on Beukers's and related integrals, Amer. Math. Monthly 126(4) (2019), 361-363.
EXAMPLE
1.62847371290158444705588914326188303165054031095462141647413643009...
MAPLE
evalf(add(n/(n^n), n = 0..65), 100); # Peter Bala, Nov 02 2022
MATHEMATICA
s = 0; Do[s = N[s + n/n^n, 128], {n, 62}]; RealDigits[s, 10, 111][[1]] (* Robert G. Wilson v, Nov 03 2004 *)
PROG
(PARI) suminf(n=1, 1/n^(n-1)) \\ Michel Marcus, Oct 21 2019
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Oct 27 2004
EXTENSIONS
More terms from Robert G. Wilson v, Nov 03 2004
STATUS
approved