login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341927
Bisection of the numerators of the convergents of cf(1,4,1,6,1,6,...,6,1).
1
1, 6, 47, 370, 2913, 22934, 180559, 1421538, 11191745, 88112422, 693707631, 5461548626, 42998681377, 338527902390, 2665224537743, 20983268399554, 165200922658689, 1300624112869958, 10239791980300975, 80617711729537842, 634701901856001761, 4996997503118476246, 39341278123091808207
OFFSET
0,2
COMMENTS
15*a(n)^2 - 11 is a square for all terms.
x = a(n) and y = a(n+1) satisfy x^2 + y^2 - 8*x*y = -11.
x = a(n) and y = a(n+2) satisfy x^2 + y^2 - 62*x*y = -704.
FORMULA
a(0) = 1; a(1) = 6; a(n) = 8*a(n-1) - a(n-2).
G.f.: (1 - 2*x)/(1 - 8*x + x^2). - Stefano Spezia, Feb 26 2021
a(n) = A237262(2*n + 1).
EXAMPLE
a(3) = 8*6 - 1 = 47.
MATHEMATICA
LinearRecurrence[{8, -1}, {1, 6}, 15]
PROG
(PARI) my(p=Mod('x, 'x^2-8*'x+1)); a(n) = subst(lift(p^n), 'x, 6); \\ Kevin Ryde, Mar 01 2021
CROSSREFS
Bisection of A237262.
Cf. A341929.
Sequence in context: A024076 A015553 A291028 * A071878 A369502 A364748
KEYWORD
nonn,easy
AUTHOR
John O. Oladokun, Feb 23 2021
STATUS
approved