OFFSET
0,1
COMMENTS
Previous name was: 10-adic integer x such that x^3 == (10^(n+1)-1)/3 mod 10^(n+1) for n >= 0.
The 10-adic cube root of -1/3, i.e., x such that 3*x^3 = -1 (mod 10^n) for all n. - M. F. Hasler, Jan 02 2019
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 9 * (3 * b(n-1)^3 + 1) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 12 2019
EXAMPLE
7^3 == 3 (mod 10).
77^3 == 33 (mod 10^2).
477^3 == 333 (mod 10^3).
6477^3 == 3333 (mod 10^4).
46477^3 == 33333 (mod 10^5).
446477^3 == 333333 (mod 10^6).
MAPLE
b:= proc(n) option remember; `if`(n<2, 7*n,
irem(b(n-1)+9*(3*b(n-1)^3+1), 10^n))
end:
a:= n-> (b(n+1)-b(n))/10^n:
seq(a(n), n=0..100); # Alois P. Heinz, Apr 15 2022
PROG
(PARI) n=0; for(i=1, 100, m=(10^i-1)/3; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
(PARI) upto(N=100, m=1/3)=Vecrev(digits(lift(chinese(Mod((-m+O(5^N))^m, 5^N), Mod((-m+O(2^N))^m, 2^N)))), N) \\ Following Andrew Howroyd's code for A319740. - M. F. Hasler, Jan 02 2019
(Ruby)
def A225402(n)
ary = [7]
a = 7
n.times{|i|
b = (a + 9 * (3 * a ** 3 + 1)) % (10 ** (i + 2))
ary << (b - a) / (10 ** (i + 1))
a = b
}
ary
end
p A225402(100) # Seiichi Manyama, Aug 12 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Aswini Vaidyanathan, May 07 2013
EXTENSIONS
New name (using M. F. Hasler's comment) from Joerg Arndt, Aug 08 2019
STATUS
approved