login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140356
Triangle T(n,m) read by rows: m! if m <= floor(n/2), and (n-m)! otherwise.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 6, 2, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 2, 6, 24, 6, 2, 1, 1, 1, 1, 2, 6, 24, 24, 6, 2, 1, 1, 1, 1, 2, 6, 24, 120, 24, 6, 2, 1, 1, 1, 1, 2, 6, 24, 120, 120, 24, 6, 2, 1, 1, 1, 1, 2, 6, 24, 120, 720, 120, 24, 6, 2, 1, 1, 1, 1, 2, 6, 24
OFFSET
0,13
COMMENTS
Row sums: 1, 2, 3, 4, 6, 8, 14, 20, 44, 68, 188,... which is
2*A003422((n+1)/2) if n is odd, and A003422(n/2)+A003422(1+n/2) if n is even.
FORMULA
T(n,m) = A000142(m) if m<=[n/2], = A000142(n-m) if m>[n/2], 0<=m<=n.
Conjecture: limit_{n->infinity} sum_{m=0..n} ( 1/binomial(n,m) - T(n,m) ) = 0.
T(n,m) = T(n,n-m).
EXAMPLE
1,
1, 1,
1, 1, 1,
1, 1, 1, 1,
1, 1, 2, 1, 1,
1, 1, 2, 2, 1, 1,
1, 1, 2, 6, 2, 1, 1,
1, 1, 2, 6, 6, 2, 1, 1,
1, 1, 2, 6, 24, 6, 2, 1,1,
1, 1, 2, 6, 24, 24, 6, 2, 1, 1,
1, 1, 2, 6, 24, 120, 24, 6, 2, 1, 1
MATHEMATICA
g[n_, m_] := If[m <= Floor[n/2], m!, (n - m)! ]; w = Table[Table[g[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[w] Table[Apply[Plus, Table[g[n, m], {m, 0, n}]], {n, 0, 10}]
CROSSREFS
Sequence in context: A139147 A055801 A155050 * A119963 A057790 A350889
KEYWORD
nonn,easy,tabl
AUTHOR
EXTENSIONS
Non-Ascii characters corrected, offset set to 0, reported Mma experiments removed - The Assoc. Editors of the OEIS, Oct 31 2009
STATUS
approved