|
|
A140356
|
|
Triangle T(n,m) read by rows: m! if m <= floor(n/2), and (n-m)! otherwise.
|
|
2
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 6, 2, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 2, 6, 24, 6, 2, 1, 1, 1, 1, 2, 6, 24, 24, 6, 2, 1, 1, 1, 1, 2, 6, 24, 120, 24, 6, 2, 1, 1, 1, 1, 2, 6, 24, 120, 120, 24, 6, 2, 1, 1, 1, 1, 2, 6, 24, 120, 720, 120, 24, 6, 2, 1, 1, 1, 1, 2, 6, 24
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,13
|
|
COMMENTS
|
Row sums: 1, 2, 3, 4, 6, 8, 14, 20, 44, 68, 188,... which is
2*A003422((n+1)/2) if n is odd, and A003422(n/2)+A003422(1+n/2) if n is even.
|
|
LINKS
|
Table of n, a(n) for n=0..95.
|
|
FORMULA
|
T(n,m) = A000142(m) if m<=[n/2], = A000142(n-m) if m>[n/2], 0<=m<=n.
Conjecture: limit_{n->infinity} sum_{m=0..n} ( 1/binomial(n,m) - T(n,m) ) = 0.
T(n,m) = T(n,n-m).
|
|
EXAMPLE
|
1,
1, 1,
1, 1, 1,
1, 1, 1, 1,
1, 1, 2, 1, 1,
1, 1, 2, 2, 1, 1,
1, 1, 2, 6, 2, 1, 1,
1, 1, 2, 6, 6, 2, 1, 1,
1, 1, 2, 6, 24, 6, 2, 1,1,
1, 1, 2, 6, 24, 24, 6, 2, 1, 1,
1, 1, 2, 6, 24, 120, 24, 6, 2, 1, 1
|
|
MATHEMATICA
|
g[n_, m_] := If[m <= Floor[n/2], m!, (n - m)! ]; w = Table[Table[g[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[w] Table[Apply[Plus, Table[g[n, m], {m, 0, n}]], {n, 0, 10}]
|
|
CROSSREFS
|
Sequence in context: A139147 A055801 A155050 * A119963 A057790 A350889
Adjacent sequences: A140353 A140354 A140355 * A140357 A140358 A140359
|
|
KEYWORD
|
nonn,easy,tabl
|
|
AUTHOR
|
Roger L. Bagula and Gary W. Adamson, May 30 2008
|
|
EXTENSIONS
|
Non-Ascii characters corrected, offset set to 0, reported Mma experiments removed - The Assoc. Editors of the OEIS, Oct 31 2009
|
|
STATUS
|
approved
|
|
|
|