login
A140356
Triangle T(n,m) read by rows: m! if m <= floor(n/2), and (n-m)! otherwise.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 6, 2, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 2, 6, 24, 6, 2, 1, 1, 1, 1, 2, 6, 24, 24, 6, 2, 1, 1, 1, 1, 2, 6, 24, 120, 24, 6, 2, 1, 1, 1, 1, 2, 6, 24, 120, 120, 24, 6, 2, 1, 1, 1, 1, 2, 6, 24, 120, 720, 120, 24, 6, 2, 1, 1, 1, 1, 2, 6, 24
OFFSET
0,13
COMMENTS
Row sums: 1, 2, 3, 4, 6, 8, 14, 20, 44, 68, 188,... which is
2*A003422((n+1)/2) if n is odd, and A003422(n/2)+A003422(1+n/2) if n is even.
FORMULA
T(n,m) = A000142(m) if m<=[n/2], = A000142(n-m) if m>[n/2], 0<=m<=n.
Conjecture: limit_{n->infinity} sum_{m=0..n} ( 1/binomial(n,m) - T(n,m) ) = 0.
T(n,m) = T(n,n-m).
EXAMPLE
1,
1, 1,
1, 1, 1,
1, 1, 1, 1,
1, 1, 2, 1, 1,
1, 1, 2, 2, 1, 1,
1, 1, 2, 6, 2, 1, 1,
1, 1, 2, 6, 6, 2, 1, 1,
1, 1, 2, 6, 24, 6, 2, 1,1,
1, 1, 2, 6, 24, 24, 6, 2, 1, 1,
1, 1, 2, 6, 24, 120, 24, 6, 2, 1, 1
MATHEMATICA
g[n_, m_] := If[m <= Floor[n/2], m!, (n - m)! ]; w = Table[Table[g[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[w] Table[Apply[Plus, Table[g[n, m], {m, 0, n}]], {n, 0, 10}]
CROSSREFS
Sequence in context: A139147 A055801 A155050 * A119963 A057790 A350889
KEYWORD
nonn,easy,tabl
AUTHOR
_Roger L. Bagula_ and _Gary W. Adamson_, May 30 2008
EXTENSIONS
Non-Ascii characters corrected, offset set to 0, reported Mma experiments removed - The Assoc. Editors of the OEIS, Oct 31 2009
STATUS
approved