The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055801 Triangle T read by rows: T(i,0)=T(i,i)=1, T(i,j) = Sum_{k=1..floor(n/2)} T(i-2k, j-2k+1) for 1<=j<=i-1, where T(m,n) := 0 if m<0 or n<0. 7
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 3, 1, 1, 1, 1, 2, 3, 4, 3, 1, 1, 1, 1, 2, 3, 5, 6, 4, 1, 1, 1, 1, 2, 3, 5, 7, 7, 4, 1, 1, 1, 1, 2, 3, 5, 8, 11, 10, 5, 1, 1, 1, 1, 2, 3, 5, 8, 12, 14, 11, 5, 1, 1, 1, 1, 2, 3, 5, 8, 13, 19, 21, 15, 6, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,14 COMMENTS T(i+j,j) is the number of strings (s(1),...,s(m)) of nonnegative integers s(k) such that m<=i+1, s(m)=j and s(k)-s(k-1) is an odd positive integer for k=2,3,...,m. T(i+j,j) is the number of compositions of numbers <=j using up to i parts, each an odd positive integer. LINKS G. C. Greubel, Rows n = 0..100 of triangle, flattened Clark Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338, Example 2B. EXAMPLE Rows: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1 2 3 3 1 1 1 1 2 3 4 3 1 1 1 1 2 3 5 6 4 1 1 1 1 2 3 5 7 7 4 1 1 1 1 2 3 5 8 11 10 5 1 1 1 1 2 3 5 8 12 14 11 5 1 1 1 1 2 3 5 8 13 19 21 15 6 1 1 1 1 2 3 5 8 13 20 26 25 16 6 1 1 1 1 2 3 5 8 13 21 32 40 36 21 7 1 1 1 1 2 3 5 8 13 21 33 46 51 41 22 7 1 T(9,6) counts the strings 3456, 1236, 1256, 1456, 036, 016, 056. T(9,6) counts the compositions 111, 113, 131, 311, 33, 15, 51. MAPLE A055801 := proc(i, j) option remember; if j =0 or j = i then 1; elif i < 0 or j < 0 then 0; else add(procname(i-2*k, j-2*k+1), k=1..floor(i/2)) ; end if; end proc: seq(seq(A055801(n, k), k=0..n), n=0..20); # R. J. Mathar, Feb 11 2018 MATHEMATICA T[n_, k_]:= T[n, k]= If[n<0 || k<0, 0, If[k==0 || k==n, 1, Sum[T[n-2*j, k-2*j+1 ], {j, Floor[n/2]}]]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 23 2020 *) PROG (PARI) T(n, k) = if(n<0 || k<0, 0, if(k==0 || k==n, 1, sum(j=1, n\2, T(n-2*j, k-2*j+1)))); for(n=0, 15, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jan 23 2020 (Magma) function T(n, k) if n lt 0 or k lt 0 then return 0; elif k eq 0 or k eq n then return 1; else return (&+[T(n-2*j, k-2*j+1): j in [1..Floor(n/2)]]); end if; return T; end function; [T(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 23 2020 (Sage) @CachedFunction def T(n, k): if (n<0 or k<0): return 0 elif (k==0 or k==n): return 1 else: return sum(T(n-2*j, k-2*j+1) for j in (1..floor(n/2))) [[T(n, k) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Jan 23 2020 (GAP) T:= function(n, k) if n<0 or k<0 then return 0; elif k=0 or k=n then return 1; else return Sum([1..Int(n/2)], j-> T(n-2*j, k-2*j+1)); fi; end; Flat(List([0..15], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jan 23 2020 CROSSREFS Infinitely many of the columns are (1, 1, 1, 2, 3, 5, 8, ..., Fibonacci numbers) Essentially a reflected version of A011794. Cf. A055802, A055803, A055804, A055805, A055806. Sequence in context: A238384 A139040 A139147 * A155050 A140356 A119963 Adjacent sequences: A055798 A055799 A055800 * A055802 A055803 A055804 KEYWORD nonn,tabl,easy AUTHOR Clark Kimberling, May 28 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 10 09:32 EDT 2024. Contains 375786 sequences. (Running on oeis4.)