|
|
A055801
|
|
Triangle T read by rows: T(i,0)=T(i,i)=1, T(i,j) = Sum_{k=1..floor(n/2)} T(i-2k, j-2k+1) for 1<=j<=i-1, where T(m,n) := 0 if m<0 or n<0.
|
|
7
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 3, 1, 1, 1, 1, 2, 3, 4, 3, 1, 1, 1, 1, 2, 3, 5, 6, 4, 1, 1, 1, 1, 2, 3, 5, 7, 7, 4, 1, 1, 1, 1, 2, 3, 5, 8, 11, 10, 5, 1, 1, 1, 1, 2, 3, 5, 8, 12, 14, 11, 5, 1, 1, 1, 1, 2, 3, 5, 8, 13, 19, 21, 15, 6, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,14
|
|
COMMENTS
|
T(i+j,j) is the number of strings (s(1),...,s(m)) of nonnegative integers s(k) such that m<=i+1, s(m)=j and s(k)-s(k-1) is an odd positive integer for k=2,3,...,m.
T(i+j,j) is the number of compositions of numbers <=j using up to i parts, each an odd positive integer.
|
|
LINKS
|
|
|
EXAMPLE
|
Rows:
1
1 1
1 1 1
1 1 1 1
1 1 1 2 1
1 1 1 2 2 1
1 1 1 2 3 3 1
1 1 1 2 3 4 3 1
1 1 1 2 3 5 6 4 1
1 1 1 2 3 5 7 7 4 1
1 1 1 2 3 5 8 11 10 5 1
1 1 1 2 3 5 8 12 14 11 5 1
1 1 1 2 3 5 8 13 19 21 15 6 1
1 1 1 2 3 5 8 13 20 26 25 16 6 1
1 1 1 2 3 5 8 13 21 32 40 36 21 7 1
1 1 1 2 3 5 8 13 21 33 46 51 41 22 7 1
T(9,6) counts the strings 3456, 1236, 1256, 1456, 036, 016, 056.
T(9,6) counts the compositions 111, 113, 131, 311, 33, 15, 51.
|
|
MAPLE
|
A055801 := proc(i, j) option remember;
if j =0 or j = i then 1;
elif i < 0 or j < 0 then 0;
else add(procname(i-2*k, j-2*k+1), k=1..floor(i/2)) ;
end if;
end proc:
|
|
MATHEMATICA
|
T[n_, k_]:= T[n, k]= If[n<0 || k<0, 0, If[k==0 || k==n, 1, Sum[T[n-2*j, k-2*j+1 ], {j, Floor[n/2]}]]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 23 2020 *)
|
|
PROG
|
(PARI) T(n, k) = if(n<0 || k<0, 0, if(k==0 || k==n, 1, sum(j=1, n\2, T(n-2*j, k-2*j+1))));
for(n=0, 15, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jan 23 2020
(Magma)
function T(n, k)
if n lt 0 or k lt 0 then return 0;
elif k eq 0 or k eq n then return 1;
else return (&+[T(n-2*j, k-2*j+1): j in [1..Floor(n/2)]]);
end if; return T; end function;
[T(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 23 2020
(Sage)
@CachedFunction
def T(n, k):
if (n<0 or k<0): return 0
elif (k==0 or k==n): return 1
else: return sum(T(n-2*j, k-2*j+1) for j in (1..floor(n/2)))
[[T(n, k) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Jan 23 2020
(GAP)
T:= function(n, k)
if n<0 or k<0 then return 0;
elif k=0 or k=n then return 1;
else return Sum([1..Int(n/2)], j-> T(n-2*j, k-2*j+1));
fi; end;
Flat(List([0..15], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jan 23 2020
|
|
CROSSREFS
|
Infinitely many of the columns are (1, 1, 1, 2, 3, 5, 8, ..., Fibonacci numbers)
Essentially a reflected version of A011794.
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|