login
A139040
Triangle read by rows: each row is an initial segment of the terms of A000930 followed by its reflection.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 6, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 6, 6, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 6, 9, 6, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 6, 9, 9, 6, 4, 3, 2, 1, 1
OFFSET
1,13
EXAMPLE
Triangle begins:
{1},
{1, 1},
{1, 1, 1},
{1, 1, 1, 1},
{1, 1, 2, 1, 1},
{1, 1, 2, 2, 1, 1},
{1, 1, 2, 3, 2, 1, 1},
{1, 1, 2, 3, 3, 2, 1, 1},
{1, 1, 2, 3, 4, 3, 2, 1, 1},
{1, 1, 2, 3, 4, 4, 3, 2, 1, 1},
{1, 1, 2, 3, 4, 6, 4, 3, 2, 1, 1}
MAPLE
A000930 := proc(n) coeftayl( 1/(1-x-x^3), x=0, n) ; end: A139040 := proc(n, m) A000930(min(m, n+1-m)) ; end: for n from 1 to 16 do for m from 1 to n do printf("%d, ", A139040(n, m)) ; od: od: # R. J. Mathar, Jun 08 2008
MATHEMATICA
a[-2]=0; a[-1]=1; a[0]=1; a[n_]:=a[n]=a[n-1]+a[n-3]; (*A000930*)
g[n_, m_]:=If[m <= Floor[n/2], a[m], a[n-m]]; w=Table[Table[g[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[w]
CROSSREFS
Cf. A139147, A000930. Row sums are in A238383.
Sequence in context: A306741 A274193 A238384 * A139147 A055801 A155050
KEYWORD
nonn,easy,tabl
AUTHOR
EXTENSIONS
Edited and corrected by N. J. A. Sloane, Jun 30 2008
Corrected by Philippe Deléham, Feb 25 2014
STATUS
approved