The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A139037 Triangular sequence of coefficients of T_n(2^n*x) where T_n is the n-th Chebyshev polynomial. 0
 1, 0, 2, -1, 0, 32, 0, -24, 0, 2048, 1, 0, -2048, 0, 524288, 0, 160, 0, -655360, 0, 536870912, -1, 0, 73728, 0, -805306368, 0, 2199023255552, 0, -896, 0, 117440512, 0, -3848290697216, 0, 36028797018963968, 1, 0, -2097152, 0, 687194767360, 0, -72057594037927936, 0, 2361183241434822606848, 0, 4608, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Old name was: A triangular sequence of coefficients Chebyshev T(x,n) as Besicovitch-Ursell polynomials (fractal orthogonal functions): f(x,n) = ChebyshevT[n,2^n*x]/2^(s*n). Row sums are: 1, 2, 31, 2024, 522241, 536215712, 2198218022911, 36024948845706368, 2361111184527977349121, 618964706995596541734949376, 649035559893095618486323487178751, ... (cf A197320) The integration of these functions is alternating orthogonal as are a lot of secondary Chebyshev polynomial sets: TableForm[Table[Integrate[(ChebyshevT[n, 2^n*x]/2^(s*n))*(ChebyshevT[m, 2^m*x]/2^(s*m))/Sqrt[1 -x^2], {x, -1, 1}], {n, 0, 10}, {m, 0, 10}]]. The fractal dimensional scaling here acts as a constant during integration. These "biscuit" type functions are closely related to Weierstrass fractal and are usually constructed with a unit square "cartoon". Graphing the polynomials shows that it is the "even" functions that are orthogonal. Orthogonal fractal systems are found in quantum fractals. REFERENCES G. A. Edgar, Measure, Topology and Fractal Geometry, Springer-Verlag, New York, 1990, 202-206. LINKS Daniel Wójcik, Iwo Białynicki-Birula, and Karol Zyczkowski, Time Evolution of Quantum Fractals, Phys. Rev. Lett. 85, 5022 - 5025 (2000). FORMULA s=Log[2]/Log[3]; f(x,n)=ChebyshevT[n,2^n*x]/2^(s*n); out_n,m=2^(s*n)*Coefficients(f(x,n)) EXAMPLE {1}, {0, 2}, {-1, 0, 32}, {0, -24, 0, 2048}, {1, 0, -2048,0, 524288}, {0, 160, 0, -655360, 0, 536870912}, {-1, 0, 73728, 0, -805306368, 0, 2199023255552}, {0, -896, 0, 117440512, 0, -3848290697216, 0, 36028797018963968}, {1, 0, -2097152, 0, 687194767360, 0, -72057594037927936, 0, 2361183241434822606848}, {0, 4608, 0, -16106127360, 0, 15199648742375424, 0, -5312662293228350865408, 0, 618970019642690137449562112}, {-1, 0, 52428800, 0, -439804651110400, 0,1291272085159668613120, 0, -1547425049106725343623905280,0, 649037107316853453566312041152512} MATHEMATICA (* The polynomials: *) s = Log[2]/Log[3]; g = Table[ChebyshevT[n, 2^n*x]/2^(s*n), {n, 0, 10}]; (* the data: *) a = Table[CoefficientList[ChebyshevT[n, 2^n*x], x], {n, 0, 10}]; Flatten[a] (* row sums: *) Table[Apply[Plus, CoefficientList[ChebyshevT[n, 2^n*x], x]], {n, 0, 10}]; CROSSREFS Sequence in context: A249570 A051652 A077019 * A108511 A261160 A270668 Adjacent sequences:  A139034 A139035 A139036 * A139038 A139039 A139040 KEYWORD tabl,sign AUTHOR Roger L. Bagula and Gary W. Adamson, May 31 2008 EXTENSIONS Edited by Michel Marcus, May 30 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 00:21 EST 2021. Contains 349530 sequences. (Running on oeis4.)