The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A139038 Centrally symmetric triangle read by rows: t(n,m) = A000931(m+1) if m <= floor(n/2), A000931(n - m+1) otherwise. 4
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 4, 3, 2, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,13 COMMENTS Row sums: {1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 22, ...}. The Padovan sequence is pushed back to a(-1)=1, so that the triangle is not almost all ones. LINKS Table of n, a(n) for n=1..65. FORMULA a(n) = a(n-2) + a(n-3); t(n, m) = a(m) if m <= floor(n/2), a(n-m) otherwise. EXAMPLE {1}, {1, 1}, {1, 1, 1}, {1, 1, 1, 1}, {1, 1, 2, 1, 1}, {1, 1, 2, 2, 1, 1}, {1, 1, 2, 2, 2, 1, 1}, {1, 1, 2, 2, 2, 2, 1, 1}, {1, 1, 2, 2, 3, 2, 2, 1, 1}, {1, 1, 2, 2, 3, 3, 2, 2, 1, 1}, {1, 1, 2, 2, 3, 4, 3, 2, 2, 1, 1} MATHEMATICA Clear[a] a[ -1] = 1; a[0] = 1; a[1] = 1; a[n_] := a[n] = a[n - 2] + a[n - 3]; (* Padovan : A000931 *) Table[If[m <= Floor[n/2], a[m], a[n - m]], {n, 0, 10}, {m, 0, n}] (* Alternative Mathematica function*) t[n_, m_] = Min[1 + Floor[m/2], 1 + Floor[(n - m)/2]]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}] CROSSREFS Cf. A139147. Sequence in context: A155052 A096284 A163100 * A322812 A259094 A306741 Adjacent sequences: A139035 A139036 A139037 * A139039 A139040 A139041 KEYWORD nonn,tabl AUTHOR Roger L. Bagula and Gary W. Adamson, May 31 2008 EXTENSIONS Edited by N. J. A. Sloane, Feb 28 2009 Non-ASCII characters in %t line corrected by Wouter Meeussen, Feb 10 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 03:03 EST 2023. Contains 367422 sequences. (Running on oeis4.)