OFFSET
1,14
COMMENTS
The Lecture Hall Theorem states that (the number of partitions (d1,d2,...,dn) of m such that 0 <= d1/1 <= d2/2 <= ... <= dn/n) equals (the number of partitions of m into odd parts less than 2n).
LINKS
Seiichi Manyama, Antidiagonals n = 1..140, flattened
M. Bousquet-Mélou, K. Eriksson, Lecture hall partitions, The Ramanujan J. 1 (1997) 101-111.
M. Bousquet-Mélou, K. Eriksson, Lecture hall partitions II, The Ramanujan J. 1 (1997) 165-185.
Mireille Bousquet-Mélou, Kimmo Eriksson, A Refinement of the Lecture Hall Theorem, Journal of Combinatorial Theory, Series A, Volume 86, Issue 1, April 1999, Pages 63-84
Niklas Eriksen, A simple bijection between lecture hall partitions and partitions into odd integers Formal Power Series and Algebraic Combinatorics. 2002.
Robin Whitty, The Lecture Hall Partition Theorem
A. J. Yee, On combinatorics of lecture hall partitions, The Ramanujan J. 5 (2001) 247-262.
EXAMPLE
The array begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ...
1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13,13,14 ...
1,1,1,2,2,3,4,4,5,6,7,8,9,10,11,13,14,15,17,18,20,22,23,25,27,29,31,33,35,37,40,42,44,47,49,52,55 ...
1,1,1,2,2,3,4,5,6,7,9,10,12,14,16,19,21,24,27,30,34,38,42,46,51,56,61,67,73,79,86,93,100,108,116 ...
1,1,1,2,2,3,4,5,6,8,10,11,14,16,19,23,26,30,35,40,45,52,58,65,74,82,91,102,113,124,138,151,165,182 ...
1,1,1,2,2,3,4,5,6,8,10,12,15,17,21,25,29,34,40,46,53,62,70,80,91,103,116,131,147,164,184,204,227 ...
1,1,1,2,2,3,4,5,6,8,10,12,15,18,22,26,31,36,43,50,58,68,78,90,103,118,134,153,173,195,220,247,277 ...
1,1,1,2,2,3,4,5,6,8,10,12,15,18,22,27,32,37,45,52,61,72,83,96,111,128,146,168,191,217,247,279,314 ...
...
The successive antidiagonals are:
[1]
[1, 1]
[1, 1, 1]
[1, 1, 1, 1]
[1, 1, 1, 2, 1]
[1, 1, 1, 2, 2, 1]
[1, 1, 1, 2, 2, 2, 1]
[1, 1, 1, 2, 2, 3, 3, 1]
[1, 1, 1, 2, 2, 3, 4, 3, 1]
[1, 1, 1, 2, 2, 3, 4, 4, 3, 1]
[1, 1, 1, 2, 2, 3, 4, 5, 5, 4, 1]
[1, 1, 1, 2, 2, 3, 4, 5, 6, 6, 4, 1]
[1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 7, 4, 1]
[1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 8, 5, 1]
...
MAPLE
G:=n->mul(1/(1-q^(2*i-1)), i=1..n);
M:=41;
G2:=n->seriestolist(series(G(n), q, M));
for n from 1 to 10 do lprint(G2(n)); od:
H:=n->[seq(G2(n-i+1)[i], i=1..n)];
for n from 1 to 14 do lprint(H(n)); od:
MATHEMATICA
G[n_] := Product[1/(1-q^(2*i-1)), {i, 1, n}];
M = 41;
G2[n_] := CoefficientList[Series[G[n], {q, 0, M}], q];
For[n = 1, n <= 10, n++; Print[G2[n]]];
H[n_] := Table[G2[n-i+1][[i]], {i, 1, n}];
Reap[For[n = 1, n <= 14, n++, Print[H[n]]; Sow[H[n]]]][[2, 1]] // Flatten (* Jean-François Alcover, Jun 04 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 19 2015
STATUS
approved