login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259094
From the Lecture Hall Theorem: array read by antidiagonals: T(n,k) = number of partitions of n into odd parts of size < 2k.
10
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 1, 1, 1, 1, 2, 2, 3, 4, 3, 1, 1, 1, 1, 2, 2, 3, 4, 4, 3, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 4, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 6, 4, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 7, 4, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 8, 5, 1
OFFSET
1,14
COMMENTS
The Lecture Hall Theorem states that (the number of partitions (d1,d2,...,dn) of m such that 0 <= d1/1 <= d2/2 <= ... <= dn/n) equals (the number of partitions of m into odd parts less than 2n).
LINKS
M. Bousquet-Mélou, K. Eriksson, Lecture hall partitions, The Ramanujan J. 1 (1997) 101-111.
M. Bousquet-Mélou, K. Eriksson, Lecture hall partitions II, The Ramanujan J. 1 (1997) 165-185.
Mireille Bousquet-Mélou, Kimmo Eriksson, A Refinement of the Lecture Hall Theorem, Journal of Combinatorial Theory, Series A, Volume 86, Issue 1, April 1999, Pages 63-84
Niklas Eriksen, A simple bijection between lecture hall partitions and partitions into odd integers Formal Power Series and Algebraic Combinatorics. 2002.
A. J. Yee, On combinatorics of lecture hall partitions, The Ramanujan J. 5 (2001) 247-262.
EXAMPLE
The array begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ...
1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13,13,14 ...
1,1,1,2,2,3,4,4,5,6,7,8,9,10,11,13,14,15,17,18,20,22,23,25,27,29,31,33,35,37,40,42,44,47,49,52,55 ...
1,1,1,2,2,3,4,5,6,7,9,10,12,14,16,19,21,24,27,30,34,38,42,46,51,56,61,67,73,79,86,93,100,108,116 ...
1,1,1,2,2,3,4,5,6,8,10,11,14,16,19,23,26,30,35,40,45,52,58,65,74,82,91,102,113,124,138,151,165,182 ...
1,1,1,2,2,3,4,5,6,8,10,12,15,17,21,25,29,34,40,46,53,62,70,80,91,103,116,131,147,164,184,204,227 ...
1,1,1,2,2,3,4,5,6,8,10,12,15,18,22,26,31,36,43,50,58,68,78,90,103,118,134,153,173,195,220,247,277 ...
1,1,1,2,2,3,4,5,6,8,10,12,15,18,22,27,32,37,45,52,61,72,83,96,111,128,146,168,191,217,247,279,314 ...
...
The successive antidiagonals are:
[1]
[1, 1]
[1, 1, 1]
[1, 1, 1, 1]
[1, 1, 1, 2, 1]
[1, 1, 1, 2, 2, 1]
[1, 1, 1, 2, 2, 2, 1]
[1, 1, 1, 2, 2, 3, 3, 1]
[1, 1, 1, 2, 2, 3, 4, 3, 1]
[1, 1, 1, 2, 2, 3, 4, 4, 3, 1]
[1, 1, 1, 2, 2, 3, 4, 5, 5, 4, 1]
[1, 1, 1, 2, 2, 3, 4, 5, 6, 6, 4, 1]
[1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 7, 4, 1]
[1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 8, 5, 1]
...
MAPLE
G:=n->mul(1/(1-q^(2*i-1)), i=1..n);
M:=41;
G2:=n->seriestolist(series(G(n), q, M));
for n from 1 to 10 do lprint(G2(n)); od:
H:=n->[seq(G2(n-i+1)[i], i=1..n)];
for n from 1 to 14 do lprint(H(n)); od:
MATHEMATICA
G[n_] := Product[1/(1-q^(2*i-1)), {i, 1, n}];
M = 41;
G2[n_] := CoefficientList[Series[G[n], {q, 0, M}], q];
For[n = 1, n <= 10, n++; Print[G2[n]]];
H[n_] := Table[G2[n-i+1][[i]], {i, 1, n}];
Reap[For[n = 1, n <= 14, n++, Print[H[n]]; Sow[H[n]]]][[2, 1]] // Flatten (* Jean-François Alcover, Jun 04 2017, translated from Maple *)
CROSSREFS
Many rows of the array are already in the OEIS: A008620, A008672, A008673, A008674, A008675, A287997, A287998, A288000, A288001.
Sequence in context: A163100 A139038 A322812 * A306741 A274193 A238384
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 19 2015
STATUS
approved