login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008673
Expansion of 1/((1-x)*(1-x^3)*(1-x^5)*(1-x^7)).
2
1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 16, 19, 21, 24, 27, 30, 34, 38, 42, 46, 51, 56, 61, 67, 73, 79, 86, 93, 100, 108, 116, 125, 134, 143, 153, 163, 174, 185, 197, 209, 221, 235, 248, 262, 277, 292, 308, 324, 341, 358, 376, 395, 414, 434, 454, 475, 497, 519, 542, 566, 590
OFFSET
0,4
COMMENTS
Number of partitions of n into parts 1, 3, 5, and 7. - Joerg Arndt, Jul 08 2013
Number of partitions (d1,d2,d3,d4) of n such that 0 <= d1/1 <= d2/2 <= d3/3 <= d4/4. - Seiichi Manyama, Jun 04 2017
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vincenzo Librandi)
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1,1,-1,1,-2,1,-1,1,-1,1,0,1,-1).
FORMULA
a(n) = floor((n^3 + 24*n^2 + 171*n + 630)/630). - Tani Akinari, Jul 08 2013
a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7) - 2*a(n-8) + a(n-9) - a(n-10) + a(n-11) - a(n-12) + a(n-13) + a(n-15) - a(n-16). - David Neil McGrath, Feb 14 2015
EXAMPLE
There are a(7)=5 partitions of n=7 into parts 1, 3, 5, and 7: (7), (511), (331), (31111), and (1111111). - David Neil McGrath, Feb 14 2015
MAPLE
seq(coeff(series(1/((1-x)*(1-x^3)*(1-x^5)*(1-x^7)), x, n+1), x, n), n = 0 .. 70); # G. C. Greubel, Sep 08 2019
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^3)(1-x^5)(1-x^7)), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 22 2013 *)
LinearRecurrence[{1, 0, 1, -1, 1, -1, 1, -2, 1, -1, 1, -1, 1, 0, 1, -1}, {1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 16, 19}, 70] (* Harvey P. Dale, Jul 08 2019 *)
PROG
(PARI) vector(70, n, m=n-1; (m^3+24*m^2+171*m+630)\630 ) \\ G. C. Greubel, Sep 08 2019
(Magma) [Floor((n^3+24*n^2+171*n+630)/630): n in [0..70]]; // G. C. Greubel, Sep 08 2019
(Sage) [floor((n^3+24*n^2+171*n+630)/630) for n in (0..70)] # G. C. Greubel, Sep 08 2019
(GAP) List([0..70], n-> Int((n^3+24*n^2+171*n+630)/630) ); # G. C. Greubel, Sep 08 2019
CROSSREFS
Cf. A259094.
Sequence in context: A065459 A011873 A173151 * A133564 A342558 A017863
KEYWORD
nonn,easy
STATUS
approved