Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #52 Sep 08 2022 08:44:36
%S 1,1,1,2,2,3,4,5,6,7,9,10,12,14,16,19,21,24,27,30,34,38,42,46,51,56,
%T 61,67,73,79,86,93,100,108,116,125,134,143,153,163,174,185,197,209,
%U 221,235,248,262,277,292,308,324,341,358,376,395,414,434,454,475,497,519,542,566,590
%N Expansion of 1/((1-x)*(1-x^3)*(1-x^5)*(1-x^7)).
%C Number of partitions of n into parts 1, 3, 5, and 7. - _Joerg Arndt_, Jul 08 2013
%C Number of partitions (d1,d2,d3,d4) of n such that 0 <= d1/1 <= d2/2 <= d3/3 <= d4/4. - _Seiichi Manyama_, Jun 04 2017
%H Seiichi Manyama, <a href="/A008673/b008673.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Vincenzo Librandi)
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=234">Encyclopedia of Combinatorial Structures 234</a>
%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1,1,-1,1,-2,1,-1,1,-1,1,0,1,-1).
%F a(n) = floor((n^3 + 24*n^2 + 171*n + 630)/630). - _Tani Akinari_, Jul 08 2013
%F a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7) - 2*a(n-8) + a(n-9) - a(n-10) + a(n-11) - a(n-12) + a(n-13) + a(n-15) - a(n-16). - _David Neil McGrath_, Feb 14 2015
%e There are a(7)=5 partitions of n=7 into parts 1, 3, 5, and 7: (7), (511), (331), (31111), and (1111111). - _David Neil McGrath_, Feb 14 2015
%p seq(coeff(series(1/((1-x)*(1-x^3)*(1-x^5)*(1-x^7)), x, n+1), x, n), n = 0 .. 70); # _G. C. Greubel_, Sep 08 2019
%t CoefficientList[Series[1/((1-x)(1-x^3)(1-x^5)(1-x^7)), {x,0,70}], x] (* _Vincenzo Librandi_, Jun 22 2013 *)
%t LinearRecurrence[{1,0,1,-1,1,-1,1,-2,1,-1,1,-1,1,0,1,-1}, {1,1,1,2,2,3, 4,5,6,7,9,10,12,14,16,19}, 70] (* _Harvey P. Dale_, Jul 08 2019 *)
%o (PARI) vector(70, n, m=n-1; (m^3+24*m^2+171*m+630)\630 ) \\ _G. C. Greubel_, Sep 08 2019
%o (Magma) [Floor((n^3+24*n^2+171*n+630)/630): n in [0..70]]; // _G. C. Greubel_, Sep 08 2019
%o (Sage) [floor((n^3+24*n^2+171*n+630)/630) for n in (0..70)] # _G. C. Greubel_, Sep 08 2019
%o (GAP) List([0..70], n-> Int((n^3+24*n^2+171*n+630)/630) ); # _G. C. Greubel_, Sep 08 2019
%Y Cf. A259094.
%K nonn,easy
%O 0,4
%A _N. J. A. Sloane_