login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259092
Smallest k such that 2^k contains three adjacent copies of n in its decimal expansion.
6
242, 42, 43, 83, 44, 41, 157, 24, 39, 50, 949, 1841, 3661, 1798, 1701, 1161, 1806, 391, 1890, 2053, 950, 1164, 2354, 1807, 3816, 1800, 1799, 818, 1702, 2115, 904, 1798, 1807, 2270, 392, 1699, 3022, 394, 2054, 1758, 1804, 2300, 2720, 2403, 3396, 1133, 1808, 3820
OFFSET
0,1
COMMENTS
The multi-digit generalization of A171242. - R. J. Mathar, Jul 06 2015
LINKS
Popular Computing (Calabasas, CA), Two Tables, Vol. 1, (No. 9, Dec 1973), page PC9-16.
EXAMPLE
2^242 = 7067388259113537318333190002971674063309935587502475832486424805170479104 contains three adjacent 0's.
MATHEMATICA
Table[k = 0; While[! SequenceCount[IntegerDigits[2^k], Flatten[ConstantArray[IntegerDigits[n], 3]]] > 0, k++]; k, {n, 0, 50}] (* Robert Price, May 17 2019 *)
PROG
(Python)
def A259092(n):
s, k, k2 = str(n)*3, 0, 1
while True:
if s in str(k2):
return k
k += 1
k2 *= 2 # Chai Wah Wu, Jun 18 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Jun 18 2015
EXTENSIONS
More terms from Chai Wah Wu, Jun 18 2015
STATUS
approved