login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171242
a(n) = k is the smallest exponent k such that at least 3 equal decimal digits "n n n" appear in the decimal representation of 2^k (n=0,1,...,9).
7
242, 42, 43, 83, 44, 41, 157, 24, 39, 50
OFFSET
0,1
REFERENCES
E. I. Ignatjew, Mathematische Spielereien, Urania Verlag Leipzig-Jena-Berlin, 2. Auflage 1982
Helmut Kracke, Mathe-musische Knobelisken, Duemmler Bonn, 2. Auflage 1983
EXAMPLE
n=0: 2^242 = 7067388259113537318333190002971674063309935587502475832486424805170479104
n=1: 2^42 = 4398046511104
n=2: 2^43 = 8796093022208
n=3: 2^83 = 9671406556917033397649408
n=4: 2^44 = 17592186044416
n=5: 2^41 = 2199023255552
n=6: 2^157 = 182687704666362864775460604089535377456991567872
n=7: 2^24 = 16777216
n=8: 2^39 = 549755813888
n=9: 2^50 = 1125899906842624
MATHEMATICA
Table[Module[{k=1}, While[SequenceCount[IntegerDigits[2^k], {n, n, n}]<1, k++]; k], {n, 0, 9}] (* Harvey P. Dale, Nov 28 2023 *)
CROSSREFS
KEYWORD
nonn,base,fini,full,easy
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Dec 06 2009
EXTENSIONS
Offset corrected by Alois P. Heinz, Nov 28 2023
STATUS
approved