login
A051652
Smallest number at distance n from nearest prime.
19
2, 1, 0, 26, 23, 118, 53, 120, 409, 532, 293, 1140, 211, 1340, 1341, 1342, 1343, 1344, 2179, 15702, 3967, 15704, 15705, 19632, 16033, 19634, 19635, 31424, 31425, 31426, 24281, 31428, 31429, 31430, 31431, 31432, 31433, 155958, 155959, 155960, 38501
OFFSET
0,1
LINKS
Michael S. Branicky, Table of n, a(n) for n = 0..228 (terms 0..91 from R. J. Mathar)
Michael S. Branicky, Python program
MAPLE
A051700 := proc(m) option remember ; if m <= 2 then op(m+1, [2, 1, 1]) ; else min(nextprime(m)-m, m-prevprime(m)) ; fi ; end:
A051652 := proc(n) local m ; if n = 0 then RETURN(2); else for m from 0 do if A051700(m) = n then RETURN(m) ; fi ; od: fi ; end:
for n from 0 to 79 do printf("%d %d\n", n, A051652(n)); od: # R. J. Mathar, Jul 22 2009
MATHEMATICA
A051700[n_] := A051700[n] = Min[ NextPrime[n] - n, n - NextPrime[n, -1]]; a[n_] := For[m = 0, True, m++, If[A051700[m] == n, Return[m]]]; a[0] = 2; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 19 2011, after R. J. Mathar *)
Join[{2, 1, 0}, Drop[Flatten[Table[Position[Table[Min[NextPrime[n]-n, n-NextPrime[ n, -1]], {n, 200000}], _?(#==i&), {1}, 1], {i, 40}]], 2]] (* Harvey P. Dale, Mar 16 2015 *)
PROG
(Python) # see link for faster program
from sympy import prevprime, nextprime
def A051700(n):
return [2, 1, 1][n] if n < 3 else min(n-prevprime(n), nextprime(n)-n)
def a(n):
if n == 0: return 2
m = 0
while A051700(m) != n: m += 1
return m
print([a(n) for n in range(26)]) # Michael S. Branicky, Feb 27 2021
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
More terms from James A. Sellers, Dec 07 1999
STATUS
approved