login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051728
Smallest number at distance 2n from nearest prime.
21
2, 0, 23, 53, 409, 293, 211, 1341, 1343, 2179, 3967, 15705, 16033, 19635, 31425, 24281, 31429, 31431, 31433, 155959, 38501, 58831, 203713, 268343, 206699, 370311, 370313, 370315, 370317, 1349591, 1357261, 1272749, 1357265, 1357267, 2010801, 2010803, 2010805, 2010807
OFFSET
0,1
COMMENTS
a(0) = 2. For n > 0, let f(m) = minimal distance from m to closest prime (excluding m itself). The a(n) = min { m : f(m) = 2n }.
f(m) is tabulated in A051700. - R. J. Mathar, Nov 18 2007
FORMULA
a(n) = A051652(2*n). - Sean A. Irvine, Oct 01 2021
MAPLE
A051700 := proc(m) if m <= 2 then op(m+1, [2, 1, 1]) ; else min(nextprime(m)-m, m-prevprime(m)) ; fi ; end: A051728 := proc(n) local m ; if n = 0 then RETURN(2); else for m from 0 do if A051700(m) = 2 * n then RETURN(m) ; fi ; od: fi ; end: seq(A051728(n), n=0..20) ; # R. J. Mathar, Nov 18 2007
MATHEMATICA
a[n_] := Module[{m}, If[n == 0, Return[2], For[m = 0, True, m++, If[Min[NextPrime[m]-m, m-NextPrime[m, -1]] == 2*n, Return[m]]]]]; Table[Print[an = a[n]]; an, {n, 0, 33}] (* Jean-François Alcover, Feb 11 2014, after R. J. Mathar *)
Join[{2}, With[{t=Table[{n, Min[n-NextPrime[n, -1], NextPrime[n]-n]}, {n, 0, 1358000}]}, Table[SelectFirst[t, #[[2]]==2k&], {k, 33}]][[All, 1]]] (* Harvey P. Dale, Aug 13 2019 *)
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from James A. Sellers, Dec 07 1999
More terms from Amiram Eldar, Aug 28 2021
STATUS
approved