OFFSET
0,2
COMMENTS
If Y is a 2-subset of an n-set X then, for n>=8, a(n-8) is the number of 8-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n-8) = binomial(n,8)-2*binomial(n-2,7), n=8,9,10,.... - Milan Janjic, Dec 28 2007
G.f.: (1-2*x+2*x^2)/(1-x)^9. [Colin Barker, Feb 22 2012]
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). - Vincenzo Librandi, May 01 2012
MATHEMATICA
CoefficientList[Series[(-2*(z - 1)*z - 1)/(z - 1)^9, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *)
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 7, 29, 93, 255, 627, 1419, 3003, 6006}, 50] (* Vincenzo Librandi, May 01 2012 *)
PROG
(Magma) [Binomial(n, 8)-2*Binomial(n-2, 7): n in [8..40]]; // Vincenzo Librandi, May 01 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 28 2000
STATUS
approved