login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055798
T(2n+5,n), array T as in A055794.
3
1, 7, 29, 93, 255, 627, 1419, 3003, 6006, 11440, 20878, 36686, 62322, 102714, 164730, 257754, 394383, 591261, 870067, 1258675, 1792505, 2516085, 3484845, 4767165, 6446700, 8625006, 11424492, 14991724, 19501108, 25158980, 32208132, 40932804, 51664173
OFFSET
0,2
COMMENTS
If Y is a 2-subset of an n-set X then, for n>=8, a(n-8) is the number of 8-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n-8) = binomial(n,8)-2*binomial(n-2,7), n=8,9,10,.... - Milan Janjic, Dec 28 2007
G.f.: (1-2*x+2*x^2)/(1-x)^9. [Colin Barker, Feb 22 2012]
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). - Vincenzo Librandi, May 01 2012
MATHEMATICA
CoefficientList[Series[(-2*(z - 1)*z - 1)/(z - 1)^9, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *)
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 7, 29, 93, 255, 627, 1419, 3003, 6006}, 50] (* Vincenzo Librandi, May 01 2012 *)
PROG
(Magma) [Binomial(n, 8)-2*Binomial(n-2, 7): n in [8..40]]; // Vincenzo Librandi, May 01 2012
CROSSREFS
Cf. A051601.
Sequence in context: A320753 A053295 A266939 * A002664 A290901 A294843
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 28 2000
STATUS
approved