The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A320753 Number of partitions of n with seven kinds of 1. 2
 1, 7, 29, 92, 247, 590, 1292, 2644, 5124, 9494, 16939, 29262, 49156, 80577, 129252, 203363, 314462, 478683, 718339, 1064009, 1557252, 2254113, 3229631, 4583602, 6447917, 8995858, 12453830, 17116103, 23363272, 31685282, 42710057, 57238971, 76290668, 101155025 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 FORMULA G.f.: 1/(1-x)^7 * 1/Product_{j>1} (1-x^j). Euler transform of 7,1,1,1,... . a(n) ~ 2 * 3^(5/2) * n^2 * exp(Pi*sqrt(2*n/3)) / Pi^6. - Vaclav Kotesovec, Oct 24 2018 MAPLE a:= proc(n) option remember; `if`(n=0, 1, add(       (numtheory[sigma](j)+6)*a(n-j), j=1..n)/n)     end: seq(a(n), n=0..40); MATHEMATICA nmax = 50; CoefficientList[Series[1/((1-x)^6 * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 24 2018 *) PROG (PARI) x='x+O('x^30); Vec(1/((1-x)^7*prod(j=2, 40, 1-x^j))) \\ G. C. Greubel, Oct 27 2018 (MAGMA) m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^7*(&*[1-x^j: j in [2..30]])))); // G. C. Greubel, Oct 27 2018 CROSSREFS Column k=7 of A292508. Sequence in context: A001779 A257201 A258475 * A053295 A266939 A055798 Adjacent sequences:  A320750 A320751 A320752 * A320754 A320755 A320756 KEYWORD nonn AUTHOR Alois P. Heinz, Oct 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 12:11 EDT 2021. Contains 347617 sequences. (Running on oeis4.)