login
A257201
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n^2+4*n+37)/5040.
2
1, 7, 29, 92, 246, 582, 1254, 2508, 4719, 8437, 14443, 23816, 38012, 58956, 89148, 131784, 190893, 271491, 379753, 523204, 710930, 953810, 1264770, 1659060, 2154555, 2772081, 3535767, 4473424, 5616952, 7002776, 8672312, 10672464, 13056153, 15882879, 19219317, 23139948, 27727726, 33074782, 39283166, 46465628
OFFSET
1,2
COMMENTS
Antidiagonal sums of the array of 5-dimensional solid numbers (see Example field).
See A257199 (second comment) for the general formula of this type of numbers: the sequence correspond to the case j = 5.
The sequence is the binomial transform of (1, 6, 16, 25, 25, 16, 6, 1, 0, 0, 0, ...). - Gary W. Adamson, Aug 26 2015
LINKS
D. A. Sardelis and T. M. Valahas, On Multidimensional Pythagorean Numbers, arXiv:0805.4070 [math.GM], 2008.
FORMULA
G.f.: x*(1 - x + x^2)/(1 - x)^8.
EXAMPLE
Array in Comments begins:
1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, ...
1, 7, 27, 77, 182, 378, 714, 1254, 2079, 3289, ...
1, 8, 33, 98, 238, 504, 966, 1716, 2871, 4576, ...
1, 9, 39, 119, 294, 630, 1218, 2178, 3663, 5863, ...
1, 10, 45, 140, 350, 756, 1470, 2640, 4455, 7150, ...
1, 11, 51, 161, 406, 882, 1722, 3102, 5247, 8437, ...
1, 12, 57, 182, 462, 1008, 1974, 3564, 6039, 9724, ...
...
MATHEMATICA
Table[n (n + 1) (n + 2) (n + 3) (n + 4) (n^2 + 4n + 37)/5040, {n, 40}]
PROG
(Magma) [n*(n+1)*(n+2)*(n+3)*(n+4)*(n^2+4*n+37)/5040: n in [1..40]]; // Vincenzo Librandi, Apr 18 2015
CROSSREFS
Sequence in context: A331767 A166189 A001779 * A258475 A320753 A053295
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Apr 18 2015
STATUS
approved