OFFSET
1,2
COMMENTS
Antidiagonal sums of the array of 5-dimensional solid numbers (see Example field).
See A257199 (second comment) for the general formula of this type of numbers: the sequence correspond to the case j = 5.
The sequence is the binomial transform of (1, 6, 16, 25, 25, 16, 6, 1, 0, 0, 0, ...). - Gary W. Adamson, Aug 26 2015
LINKS
D. A. Sardelis and T. M. Valahas, On Multidimensional Pythagorean Numbers, arXiv:0805.4070 [math.GM], 2008.
Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
FORMULA
G.f.: x*(1 - x + x^2)/(1 - x)^8.
EXAMPLE
Array in Comments begins:
1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, ...
1, 7, 27, 77, 182, 378, 714, 1254, 2079, 3289, ...
1, 8, 33, 98, 238, 504, 966, 1716, 2871, 4576, ...
1, 9, 39, 119, 294, 630, 1218, 2178, 3663, 5863, ...
1, 10, 45, 140, 350, 756, 1470, 2640, 4455, 7150, ...
1, 11, 51, 161, 406, 882, 1722, 3102, 5247, 8437, ...
1, 12, 57, 182, 462, 1008, 1974, 3564, 6039, 9724, ...
...
MATHEMATICA
Table[n (n + 1) (n + 2) (n + 3) (n + 4) (n^2 + 4n + 37)/5040, {n, 40}]
PROG
(Magma) [n*(n+1)*(n+2)*(n+3)*(n+4)*(n^2+4*n+37)/5040: n in [1..40]]; // Vincenzo Librandi, Apr 18 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Apr 18 2015
STATUS
approved