The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257199 a(n) =  n*(n+1)*(n+2)*(n^2+2*n+17)/120. 4
 1, 5, 16, 41, 91, 182, 336, 582, 957, 1507, 2288, 3367, 4823, 6748, 9248, 12444, 16473, 21489, 27664, 35189, 44275, 55154, 68080, 83330, 101205, 122031, 146160, 173971, 205871, 242296, 283712, 330616, 383537, 443037, 509712, 584193, 667147, 759278, 861328, 974078 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Antidiagonal sums of the array of pyramidal numbers shown in Table 2 of Sardelis and Valahas paper (see A261720). This is the case j = 3 of (n^2 + (j-1)*n + (j+1)^2 + 1)*binomial(n+j-1, j)/((j+1)*(j+2)), where j is the space dimension: a(n) = (n^2+2*n+17)*binomial(n+2,3)/20. The sequence is the binomial transform of (1, 4, 7, 7, 4, 1, 0, 0, 0, ...). - Gary W. Adamson, Aug 26 2015 LINKS D. A. Sardelis and T. M. Valahas, On Multidimensional Pythagorean Numbers, arXiv:0805.4070 [math.GM], 2008. Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1). FORMULA G.f.: x*(1 - x + x^2)/(1 - x)^6. MATHEMATICA Table[n (n + 1) (n + 2) (n^2 + 2n + 17)/120, {n, 40}] LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 5, 16, 41, 91, 182}, 40] (* Harvey P. Dale, Mar 18 2018 *) PROG (Magma) [n*(n+1)*(n+2)*(n^2+2*n+17)/120: n in [1..40]]; // Vincenzo Librandi, Apr 18 2015 CROSSREFS Cf. A257200, A257201. For another version of the array, see A080851. Sequence in context: A299048 A081997 A078449 * A258473 A014161 A014166 Adjacent sequences:  A257196 A257197 A257198 * A257200 A257201 A257202 KEYWORD nonn,easy AUTHOR Luciano Ancora, Apr 18 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 30 13:18 EDT 2022. Contains 354939 sequences. (Running on oeis4.)