login
A014161
Apply partial sum operator 4 times to partition numbers.
4
1, 5, 16, 41, 92, 188, 359, 650, 1128, 1890, 3075, 4878, 7571, 11527, 17254, 25436, 36988, 53122, 75435, 106014, 147573, 203618, 278657, 378453, 510344, 683626, 910031, 1204301, 1584896, 2074841, 2702765
OFFSET
0,2
COMMENTS
A014161 convolved with A010815 = the tetrahedral numbers: 1, 4, 10, 20, 35, ... . - Gary W. Adamson, Nov 09 2008
LINKS
FORMULA
a(n) ~ 3^(3/2)*n * exp(Pi*sqrt(2*n/3)) / Pi^4. - Vaclav Kotesovec, Oct 30 2015
G.f.: 1/(1-x)^4 * Product_{k>=1} 1/(1-x^k). - Vaclav Kotesovec, Oct 30 2015
MATHEMATICA
nmax = 50; CoefficientList[Series[1/((1-x)^4 * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 30 2015 *)
CROSSREFS
Cf. A000041.
Cf. A010815. - Gary W. Adamson, Nov 09 2008
Column k=5 of A292508.
Sequence in context: A078449 A257199 A258473 * A014166 A014171 A014175
KEYWORD
nonn
STATUS
approved