login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258473
Number of partitions of n into two sorts of parts having exactly 3 parts of the second sort.
2
1, 5, 16, 41, 91, 186, 351, 635, 1090, 1824, 2939, 4652, 7162, 10875, 16159, 23758, 34321, 49145, 69389, 97213, 134608, 185172, 252182, 341443, 458413, 612186, 811567, 1070826, 1403784, 1832370, 2378320, 3074642, 3954869, 5068684, 6466697, 8222640, 10412903
OFFSET
3,2
LINKS
MAPLE
b:= proc(n, i) option remember; series(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1)*add(x^t*
binomial(j, t), t=0..min(3, j)), j=0..n/i))), x, 4)
end:
a:= n-> coeff(b(n$2), x, 3):
seq(a(n), n=3..40);
MATHEMATICA
b[n_, i_] := b[n, i] = Series[If[n==0, 1, If[i<1, 0, Sum[b[n-i*j, i-1]*Sum[ x^t*Binomial[j, t], {t, 0, Min[3, j]}], {j, 0, n/i}]]], {x, 0, 4}];
a[n_] := Coefficient[b[n, n], x, 3];
a /@ Range[3, 40] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A256193.
Sequence in context: A081997 A078449 A257199 * A014161 A014166 A014171
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 31 2015
STATUS
approved