The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258474 Number of partitions of n into two sorts of parts having exactly 4 parts of the second sort. 2
 1, 6, 22, 63, 155, 342, 700, 1343, 2463, 4323, 7361, 12139, 19581, 30819, 47697, 72388, 108390, 159752, 232833, 334917, 477270, 672589, 940222, 1301954, 1790117, 2441168, 3308341, 4451294, 5955870, 7918574, 10475192, 13779096, 18042899, 23506156, 30496836 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 4..1000 MAPLE b:= proc(n, i) option remember; series(`if`(n=0, 1,       `if`(i<1, 0, add(b(n-i*j, i-1)*add(x^t*        binomial(j, t), t=0..min(4, j)), j=0..n/i))), x, 5)     end: a:= n-> coeff(b(n\$2), x, 4): seq(a(n), n=4..40); MATHEMATICA b[n_, i_] := b[n, i] = Series[If[n==0, 1, If[i<1, 0, Sum[b[n-i*j, i-1]*Sum[ x^t*Binomial[j, t], {t, 0, Min[4, j]}], {j, 0, n/i}]]], {x, 0, 5}]; a[n_] := Coefficient[b[n, n], x, 4]; a /@ Range[4, 40] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *) CROSSREFS Column k=4 of A256193. Sequence in context: A166020 A307621 A257200 * A120477 A053739 A280481 Adjacent sequences:  A258471 A258472 A258473 * A258475 A258476 A258477 KEYWORD nonn AUTHOR Alois P. Heinz, May 31 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 12:44 EDT 2022. Contains 353975 sequences. (Running on oeis4.)