login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258474
Number of partitions of n into two sorts of parts having exactly 4 parts of the second sort.
2
1, 6, 22, 63, 155, 342, 700, 1343, 2463, 4323, 7361, 12139, 19581, 30819, 47697, 72388, 108390, 159752, 232833, 334917, 477270, 672589, 940222, 1301954, 1790117, 2441168, 3308341, 4451294, 5955870, 7918574, 10475192, 13779096, 18042899, 23506156, 30496836
OFFSET
4,2
LINKS
MAPLE
b:= proc(n, i) option remember; series(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1)*add(x^t*
binomial(j, t), t=0..min(4, j)), j=0..n/i))), x, 5)
end:
a:= n-> coeff(b(n$2), x, 4):
seq(a(n), n=4..40);
MATHEMATICA
b[n_, i_] := b[n, i] = Series[If[n==0, 1, If[i<1, 0, Sum[b[n-i*j, i-1]*Sum[ x^t*Binomial[j, t], {t, 0, Min[4, j]}], {j, 0, n/i}]]], {x, 0, 5}];
a[n_] := Coefficient[b[n, n], x, 4];
a /@ Range[4, 40] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A256193.
Sequence in context: A166020 A307621 A257200 * A120477 A053739 A280481
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 31 2015
STATUS
approved