login
A258474
Number of partitions of n into two sorts of parts having exactly 4 parts of the second sort.
2
1, 6, 22, 63, 155, 342, 700, 1343, 2463, 4323, 7361, 12139, 19581, 30819, 47697, 72388, 108390, 159752, 232833, 334917, 477270, 672589, 940222, 1301954, 1790117, 2441168, 3308341, 4451294, 5955870, 7918574, 10475192, 13779096, 18042899, 23506156, 30496836
OFFSET
4,2
LINKS
MAPLE
b:= proc(n, i) option remember; series(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1)*add(x^t*
binomial(j, t), t=0..min(4, j)), j=0..n/i))), x, 5)
end:
a:= n-> coeff(b(n$2), x, 4):
seq(a(n), n=4..40);
MATHEMATICA
b[n_, i_] := b[n, i] = Series[If[n==0, 1, If[i<1, 0, Sum[b[n-i*j, i-1]*Sum[ x^t*Binomial[j, t], {t, 0, Min[4, j]}], {j, 0, n/i}]]], {x, 0, 5}];
a[n_] := Coefficient[b[n, n], x, 4];
a /@ Range[4, 40] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A256193.
Sequence in context: A166020 A307621 A257200 * A120477 A053739 A280481
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 31 2015
STATUS
approved