OFFSET
1,2
COMMENTS
Antidiagonal sums of the array of 4-dimensional solid numbers shown in Table 3 of Sardelis and Valahas paper (see also Example field).
See A257199 (second comment) for the general formula of this type of numbers: the sequence correspond to the case j = 4.
Binomial transform of (1, 5, 11, 14, 11, 5, 1, 0, 0, 0, ...). - Gary W. Adamson, Aug 26 2015
LINKS
D. A. Sardelis and T. M. Valahas, On Multidimensional Pythagorean Numbers, arXiv:0805.4070 [math.GM], 2008.
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
G.f.: x*(-1 + x - x^2)/(-1 + x)^7.
EXAMPLE
Array in Comments begins:
1, 5, 15, 35, 70, 126, 210, 330, ...
1, 6, 20, 50, 105, 196, 336, 540, ...
1, 7, 25, 65, 140, 266, 462, 750, ...
1, 8, 30, 80, 175, 336, 588, 960, ...
1, 9, 35, 95, 210, 406, 714, 1170, ...
1, 10, 40, 110, 245, 476, 840, 1380, ...
MATHEMATICA
Table[n (n + 1) (n + 2) (n + 3) (n^2 + 3n + 26)/720, {n, 40}]
PROG
(Magma) [n*(n+1)*(n+2)*(n+3)*(n^2+3*n+26)/720: n in [1..40]]; // Vincenzo Librandi, Apr 18 2015
(PARI) first(m)=vector(m, i, i*(i+1)*(i+2)*(i+3)*(i^2+3*i+26)/720) \\ Anders Hellström, Aug 26 2015
(PARI) Vec(x*(-1 + x - x^2)/(-1 + x)^7 + O(x^40)) \\ Michel Marcus, Aug 27 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Apr 18 2015
STATUS
approved