login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053739 Partial sums of A014166. 10
1, 6, 22, 63, 155, 344, 709, 1383, 2587, 4685, 8273, 14323, 24416, 41119, 68595, 113590, 187030, 306605, 500950, 816410, 1327986, 2157046, 3499982, 5674578, 9195035, 14893364, 24115804, 39040633, 63192397, 102273950, 165512723, 267839033, 433410661, 701315739, 1134800215 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (6,-14,15,-5,-4,4,-1).

FORMULA

a(n) = Sum_{i=0..floor(n/2)} binomial(n+5-i, n-2*i) for n >= 0.

a(n) = a(n-1) + a(n-2) + C(n+4,4); n >= 0; a(-1)=0.

a(n) = Sum_{k=1..n} binomial(n-k+5,k+4), with n>=0. - Paolo P. Lava, Apr 16 2008

G.f.: 1/((1-x-x^2)*(1-x)^5). - R. J. Mathar, May 22 2013

a(n) = Fibonacci(n+11) - (n^4 + 22*n^3 + 203*n^2 + 974*n + 2112)/4!. - G. C. Greubel, Sep 06 2019

MAPLE

with(combinat); seq(fibonacci(n+11)-(n^4 + 22*n^3 + 203*n^2 + 974*n + 2112)/4!, n = 0..35); # G. C. Greubel, Sep 06 2019

MATHEMATICA

Table[Fibonacci[n+11] -(n^4+22*n^3+203*n^2+974*n+2112)/4!, {n, 0, 35}] (* G. C. Greubel, Sep 06 2019 *)

PROG

(PARI) vector(35, n, m=n-1; fibonacci(n+10) - (m^4+22*m^3+203*m^2+974*m +2112)/4!) \\ G. C. Greubel, Sep 06 2019

(MAGMA) [Fibonacci(n+11) - (n^4+22*n^3+203*n^2+974*n+2112)/24: n in [0..35]]; // G. C. Greubel, Sep 06 2019

(Sage) [fibonacci(n+11) - (n^4+22*n^3+203*n^2+974*n+2112)/24 for n in (0..35)] # G. C. Greubel, Sep 06 2019

(GAP) List([0..35], n-> Fibonacci(n+11)-(n^4+22*n^3+203*n^2+974*n + 2112)/24); # G. C. Greubel, Sep 06 2019

CROSSREFS

Cf. A014166 and A000045.

Right-hand column 10 of triangle A011794.

Cf. A228074.

Sequence in context: A257200 A258474 A120477 * A280481 A055797 A001925

Adjacent sequences:  A053736 A053737 A053738 * A053740 A053741 A053742

KEYWORD

easy,nonn

AUTHOR

Barry E. Williams, Feb 13 2000

EXTENSIONS

Terms a(28) onward added by G. C. Greubel, Sep 06 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 09:32 EDT 2020. Contains 334620 sequences. (Running on oeis4.)