OFFSET
1,2
COMMENTS
Runs of successive numbers have lengths which are powers of 4.
Apparently, for any m>=1, 2^m is the largest power of 2 dividing sum(k=1,n,binomial(2k,k)^m) if and only if n is in the sequence. - Benoit Cloitre, Apr 27 2003
Numbers that begin with a 1 in base 4. - Michel Marcus, Dec 05 2013
The lower and upper asymptotic densities of this sequence are 1/3 and 2/3, respectively. - Amiram Eldar, Feb 01 2021
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Manfred Madritsch and Stephan Wagner, A central limit theorem for integer partitions, Monatsh. Math., Vol. 161, No. 1 (2010), pp. 85-114; alternative link. Section 4.3.
FORMULA
G.f.: x/(1-x)^2 + Sum_{k>=1} 2^(2k-1)*x^((4^k+2)/3)/(1-x). - Robert Israel, Dec 28 2016
MAPLE
seq(seq(i, i=4^k..2*4^k-1), k=0..5); # Robert Israel, Dec 28 2016
MATHEMATICA
Select[Range[110], OddQ[IntegerLength[#, 2]]&] (* Harvey P. Dale, Sep 29 2012 *)
PROG
(PARI) isok(n, b=4) = digits(n, b)[1] == 1; \\ Michel Marcus, Dec 05 2013
(PARI) a(n) = n + 1<<bitor(logint(3*n, 2), 1)\3; \\ Kevin Ryde, Mar 27 2021
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Henry Bottomley, Apr 06 2000
STATUS
approved