login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014166 Apply partial sum operator 4 times to Fibonacci numbers. 14
0, 1, 5, 16, 41, 92, 189, 365, 674, 1204, 2098, 3588, 6050, 10093, 16703, 27476, 44995, 73440, 119575, 194345, 315460, 511576, 829060, 1342936, 2174596, 3520457, 5698329, 9222440, 14924829, 24151764, 39081553 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Ligia Loretta Cristea, Ivica Martinjak, Igor Urbiha, Hyperfibonacci Sequences and Polytopic Numbers, arXiv:1606.06228 [math.CO], 2016.

Index entries for linear recurrences with constant coefficients, signature (5,-9,6,1,-3,1).

FORMULA

a(n) = Fibonacci(n+8) - (n^3 +12*n^2 +59*n +126)/6.

G.f.: x/((1-x)^4*(1-x-x^2)).

a(n) = Sum_{k=1..n} binomial(n-k+4, k+3), with n>=0. - Paolo P. Lava, Apr 16 2008

MAPLE

with(combinat); seq(fibonacci(n+8)-(n^3+12*n^2+59*n+126)/6, n = 0..30); # G. C. Greubel, Sep 06 2019

MATHEMATICA

Nest[Accumulate, Fibonacci[Range[0, 30]], 4] (* Jean-Fran├žois Alcover, Jan 08 2019 *)

PROG

(PARI) a(n)=fibonacci(n+8)-(n^3+12*n^2+59*n+126)/6 \\ Charles R Greathouse IV, Jun 11 2015

(MAGMA) [Fibonacci(n+8)-(n^3+12*n^2+59*n+126)/6: n on [0..30]]; // G. C. Greubel, Sep 06 2019

(Sage) [fibonacci(n+8)-(n^3+12*n^2+59*n+126)/6 for n in (0..30)] # G. C. Greubel, Sep 06 2019

(GAP) List([0..30], n-> Fibonacci(n+8)-(n^3+12*n^2+59*n+126)/6); # G. C. Greubel, Sep 06 2019

CROSSREFS

Cf. A000045, A228074, A136431.

Right-hand column 8 of triangle A011794.

Sequence in context: A257199 A258473 A014161 * A014171 A014175 A097810

Adjacent sequences:  A014163 A014164 A014165 * A014167 A014168 A014169

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 05:07 EST 2019. Contains 329323 sequences. (Running on oeis4.)