login
A258472
Number of partitions of n into two sorts of parts having exactly 2 parts of the second sort.
2
1, 4, 11, 24, 49, 89, 158, 262, 428, 667, 1033, 1542, 2289, 3313, 4765, 6717, 9427, 13011, 17882, 24260, 32763, 43775, 58268, 76837, 100953, 131629, 171003, 220683, 283877, 363016, 462794, 587005, 742332, 934536, 1173293, 1467022, 1829538, 2273365, 2817858
OFFSET
2,2
LINKS
Cristina Ballantine, George Beck, Mircea Merca, and Bruce Sagan, Elementary symmetric partitions, arXiv:2409.11268 [math.CO], 2024. See p. 20.
FORMULA
a(n) = A094533(n)/2. - Vladimir Reshetnikov, Nov 21 2016
MAPLE
b:= proc(n, i) option remember; series(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1)*add(x^t*
binomial(j, t), t=0..min(2, j)), j=0..n/i))), x, 3)
end:
a:= n-> coeff(b(n$2), x, 2):
seq(a(n), n=2..40);
MATHEMATICA
((Log[1 - x]^2 - Log[1 - x] Log[x] + QPolyGamma[1, x] (2 Log[1 - x] - Log[x] + QPolyGamma[1, x]) + QPolyGamma[1, 1, x])/(2 QPochhammer[x] Log[x]^2) + O[x]^45)[[3]] // Simplify (* Vladimir Reshetnikov, Nov 21 2016 *)
Table[SeriesCoefficient[1/QPochhammer[q + x, q], {x, 0, 2}, {q, 0, n}], {n, 0, 40}] // Simplify (* Vladimir Reshetnikov, Nov 22 2016 *)
CROSSREFS
Column k=2 of A256193.
Cf. A094533.
Sequence in context: A322618 A260057 A260150 * A376710 A007678 A339493
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 31 2015
STATUS
approved