OFFSET
0,2
COMMENTS
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..2000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(x) * psi(-x^3)^3 / (f(-x)^3 * psi(x^3)) in powers of x where psi(), f() are Ramanujan theta functions.
Euler transform of period 12 sequence [ 4, 1, 0, 2, 4, 2, 4, 2, 0, 1, 4, 0, ...].
a(n) ~ exp(2*Pi*sqrt(n/3)) / (4*3^(5/4)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
EXAMPLE
G.f. = 1 + 4*x + 11*x^2 + 24*x^3 + 48*x^4 + 92*x^5 + 170*x^6 + 304*x^7 + ...
G.f. = q^2 + 4*q^5 + 11*q^8 + 24*q^11 + 48*q^14 + 92*q^17 + 170*q^20 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2^(-1/2) x^(-3/4) QPochhammer[ -x] / QPochhammer[x]^3 EllipticTheta[ 2, Pi/4, x^(3/2)]^3 / EllipticTheta[ 2, 0, x^(3/2)], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A)^4 * eta(x^12 + A)^3 / (eta(x + A)^4 * eta(x^4 + A) * eta(x^6 + A)^5), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 08 2015
STATUS
approved