login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259033
Expansion of psi(x^3)^2 * f(-x^2)^4 / f(-x)^6 in powers of where psi(), f() are Ramanujan theta function.
2
1, 6, 23, 76, 221, 584, 1443, 3368, 7497, 16046, 33190, 66628, 130288, 248858, 465387, 853836, 1539425, 2731462, 4775703, 8236856, 14027754, 23609794, 39301171, 64747876, 105638153, 170778512, 273704800, 435079524, 686237877, 1074405242, 1670333294, 2579418528
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-5/6) * (eta(q^2)^2 * eta(q^6)^2 / (eta(q)^3 * eta(q^3)))^2 in powers of q.
Euler transform of period 6 sequence [ 6, 2, 8, 2, 6, 0, ...].
a(n) = A263528(3*n + 2). -2 * a(n) = A261369(2*n + 1) = A213265(6*n + 5) = A262930(6*n + 5).
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(19/4) * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
EXAMPLE
G.f. = 1 + 6*x + 23*x^2 + 76*x^3 + 221*x^4 + 584*x^5 + 1443*x^6 + 3368*x^7 + ...
G.f. = q^5 + 6*q^11 + 23*q^17 + 76*q^23 + 221*q^29 + 584*q^35 + 1443*q^41 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (1/4) x^(-3/4) EllipticTheta[ 2, 0, x^(3/2)]^2 QPochhammer[ x^2]^4 / QPochhammer[ x]^6, {x, 0, n}];
nmax = 40; CoefficientList[Series[Product[((1 + x^k)^2 * (1 + x^(3*k))^2 * (1 - x^(3*k)) / (1 - x^k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 16 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^6 + A)^2 / (eta(x + A)^3 * eta(x^3 + A)))^2, n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 07 2015
STATUS
approved