OFFSET
0,2
COMMENTS
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..2000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-5/6) * (eta(q^2)^2 * eta(q^6)^2 / (eta(q)^3 * eta(q^3)))^2 in powers of q.
Euler transform of period 6 sequence [ 6, 2, 8, 2, 6, 0, ...].
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(19/4) * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
EXAMPLE
G.f. = 1 + 6*x + 23*x^2 + 76*x^3 + 221*x^4 + 584*x^5 + 1443*x^6 + 3368*x^7 + ...
G.f. = q^5 + 6*q^11 + 23*q^17 + 76*q^23 + 221*q^29 + 584*q^35 + 1443*q^41 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (1/4) x^(-3/4) EllipticTheta[ 2, 0, x^(3/2)]^2 QPochhammer[ x^2]^4 / QPochhammer[ x]^6, {x, 0, n}];
nmax = 40; CoefficientList[Series[Product[((1 + x^k)^2 * (1 + x^(3*k))^2 * (1 - x^(3*k)) / (1 - x^k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 16 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^6 + A)^2 / (eta(x + A)^3 * eta(x^3 + A)))^2, n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 07 2015
STATUS
approved