login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259036
Smallest divisor of n^2+1 >= sqrt(n^2+1).
1
1, 2, 5, 5, 17, 13, 37, 10, 13, 41, 101, 61, 29, 17, 197, 113, 257, 29, 25, 181, 401, 26, 97, 53, 577, 313, 677, 73, 157, 421, 53, 37, 41, 109, 89, 613, 1297, 137, 85, 761, 1601, 58, 353, 50, 149, 1013, 73, 65, 461, 1201, 61, 1301, 541, 281, 2917, 89, 3137, 65
OFFSET
0,2
COMMENTS
Subsequence of A033677.
a(n) = n^2+1 if n^2+1 is prime (see A005574) or n=0. - Michel Marcus, Jul 01 2015
If n^2+1=p*q for primes p,q with p<q (see A085722), then a(n)=q. - Robert Israel, Dec 03 2019
LINKS
FORMULA
a(n) = A033677(A002522(n)).
EXAMPLE
a(7) = 10 because 7^2+1 = 2*5*5 and 2*5 = 10 is the smallest divisor >=sqrt(7^2+1) = 7.0710678118...
MAPLE
f:= proc(n) local m, k;
m:= n^2+1;
min(select(t -> t^2 >= m, numtheory:-divisors(m)))
end proc:
map(f, [$0..100]); # Robert Israel, Dec 03 2019
MATHEMATICA
Table[Select[Divisors[n^2+1], # >= Sqrt[n^2+1] &, 1] // First, {n, 80}]
PROG
(PARI) concat(1, vector(100, n, d=divisors(n^2+1); k=1; while(d[k]<sqrt(n^2+1), k++); d[k])) \\ Derek Orr, Jun 27 2015
(Magma) [Min([d:d in Divisors(k^2+1)|d ge Sqrt(k^2+1) ]):k in [0..60]]; // Marius A. Burtea, Dec 03 2019
CROSSREFS
KEYWORD
nonn,easy,look
AUTHOR
Michel Lagneau, Jun 17 2015
STATUS
approved