Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 08 2022 08:46:13
%S 1,2,5,5,17,13,37,10,13,41,101,61,29,17,197,113,257,29,25,181,401,26,
%T 97,53,577,313,677,73,157,421,53,37,41,109,89,613,1297,137,85,761,
%U 1601,58,353,50,149,1013,73,65,461,1201,61,1301,541,281,2917,89,3137,65
%N Smallest divisor of n^2+1 >= sqrt(n^2+1).
%C Subsequence of A033677.
%C a(n) = n^2+1 if n^2+1 is prime (see A005574) or n=0. - _Michel Marcus_, Jul 01 2015
%C If n^2+1=p*q for primes p,q with p<q (see A085722), then a(n)=q. - _Robert Israel_, Dec 03 2019
%H Robert Israel, <a href="/A259036/b259036.txt">Table of n, a(n) for n = 0..10000</a>
%F a(n) = A033677(A002522(n)).
%e a(7) = 10 because 7^2+1 = 2*5*5 and 2*5 = 10 is the smallest divisor >=sqrt(7^2+1) = 7.0710678118...
%p f:= proc(n) local m,k;
%p m:= n^2+1;
%p min(select(t -> t^2 >= m, numtheory:-divisors(m)))
%p end proc:
%p map(f, [$0..100]); # _Robert Israel_, Dec 03 2019
%t Table[Select[Divisors[n^2+1], # >= Sqrt[n^2+1] &, 1] // First, {n, 80}]
%o (PARI) concat(1,vector(100,n,d=divisors(n^2+1);k=1;while(d[k]<sqrt(n^2+1),k++);d[k])) \\ _Derek Orr_, Jun 27 2015
%o (Magma) [Min([d:d in Divisors(k^2+1)|d ge Sqrt(k^2+1) ]):k in [0..60]]; // _Marius A. Burtea_, Dec 03 2019
%Y Cf. A002522, A005574, A033677, A085722.
%K nonn,easy,look
%O 0,2
%A _Michel Lagneau_, Jun 17 2015