OFFSET
0,2
COMMENTS
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of ( eta(q) * eta(q^3) * eta(q^4) * eta(q^12) / ( eta(q^2) * eta(q^6)^3 ))^2 in powers of q.
Euler transform of period 12 sequence [ -2, 0, -4, -2, -2, 4, -2, -2, -4, 0, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 3 g(t) where q = exp(2 Pi i t) and g() is the g.f. of A261369.
Convolution square of A139136.
EXAMPLE
G.f. = 1 - 2*x + x^2 - 4*x^3 + 6*x^4 - 2*x^5 + 12*x^6 - 16*x^7 + 5*x^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (1/2) q^(-1/4) (EllipticTheta[ 2, Pi/4, q^(1/2)] / QPochhammer[ -q^3])^2, {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / ( eta(x^2 + A) * eta(x^6 + A)^3 ))^2, n))};
CROSSREFS
KEYWORD
sign,changed
AUTHOR
Michael Somos, Oct 04 2015
STATUS
approved