login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262933
Expansion of f(-q^2, -q^5)^3 / (f(-q^1, -q^6) * f(-q^3, -q^4)^2) in powers of q where f(, ) is Ramanujan's general theta function.
4
1, 1, -2, 0, 5, -4, -7, 12, 4, -22, 7, 29, -26, -28, 52, 14, -82, 21, 106, -85, -105, 175, 53, -268, 70, 326, -264, -301, 505, 142, -742, 189, 885, -698, -805, 1323, 374, -1906, 483, 2205, -1732, -1946, 3185, 884, -4486, 1120, 5119, -3972, -4473, 7229, 2004
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 7 sequence [ 1, -3, 2, 2, -3, 1, 0, ...].
G.f.: T(q)/(T(q)-1), where T(q) = 1/q + 3 + 4*q + ... (cf. A108481). - Seiichi Manyama, Oct 11 2018
EXAMPLE
G.f. = 1 + q - 2*q^2 + 5*q^4 - 4*q^5 - 7*q^6 + 12*q^7 + 4*q^8 - 22*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{-1, 3, -2, -2, 3, -1, 0}[[Mod[k, 7, 1]]], {k, n}], {x, 0, n}];
(* alternative program *)
QP:= QPochhammer; a[n_]:= SeriesCoefficient[(QP[q^2, q^7]*QP[q^5, q^7])^3/ (QP[q, q^7]*QP[q^6, q^7]*QP[q^3, q^7]^2*QP[q^4, q^7]^2), {q, 0, n}];
Table[a[n], {n, 0, 50}] (* G. C. Greubel, Mar 18 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[0, -1, 3, -2, -2, 3, -1][k%7 + 1]), n))};
CROSSREFS
Cf. A108481.
Sequence in context: A378979 A083714 A215481 * A197253 A249693 A251420
KEYWORD
sign
AUTHOR
Michael Somos, Oct 04 2015
STATUS
approved