login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249693
a(4n) = 3*n+1, a(2n+1) = 3*n+2, a(4n+2) = 3*n.
1
1, 2, 0, 5, 4, 8, 3, 11, 7, 14, 6, 17, 10, 20, 9, 23, 13, 26, 12, 29, 16, 32, 15, 35, 19, 38, 18, 41, 22, 44, 21, 47, 25, 50, 24, 53, 28, 56, 27, 59, 31, 62, 30, 65, 34, 68, 33, 71, 37, 74, 36, 77, 40, 80, 39, 83, 43, 86, 42, 89, 46, 92, 45
OFFSET
0,2
COMMENTS
A permutation of the nonnegative numbers.
FORMULA
a(n+4) = a(n) + (sequence of period 2: repeat 3, 6).
a(4n+1) = 2*a(4n).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
a(n) is the rank of A061037(n) = -1, -3, 0, 5, ... in A247829(n) = 0, -1, -3, 2, ... .
G.f.: (1 + 2*x - x^2 + 3*x^3 + 3*x^4 + x^5)/(1 - x^2 - x^4 + x^6).
a(n) = (1 + 9*n - 3*(n+1)*(-1)^n + 10*cos(n*Pi/2))/8. - Robert Israel, Dec 03 2014
MATHEMATICA
a[n_] := (1/8)*(3*(-1)^(n+1)*(n+1)+9*n+10*{1, 0, -1, 0}[[Mod[n, 4]+1]]+1); Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 04 2014, after Robert Israel *)
PROG
(PARI) x='x+O('x^75); Vec((1 + 2*x - x^2 + 3*x^3 + 3*x^4 + x^5)/(1 - x^2 - x^4 + x^6)) \\ G. C. Greubel, Sep 20 2018
(Magma) m:=75; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 + 2*x - x^2 + 3*x^3 + 3*x^4 + x^5)/(1 - x^2 - x^4 + x^6))); // G. C. Greubel, Sep 20 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Curtz, Dec 03 2014
STATUS
approved