login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010704 Period 2: repeat (3,6). 8
3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Continued fraction expansion of A176105. - R. J. Mathar, Mar 08 2012

Digital roots of A007283. - Bruno Berselli, Nov 22 2018

Decimal expansion of 4/11. - Franklin T. Adams-Watters, Nov 28 2018

LINKS

Table of n, a(n) for n=0..80.

Index entries for linear recurrences with constant coefficients, signature (0,1).

FORMULA

a(n) = -3/2*(-1)^n + 9/2 = 6*(n mod 2) + 3*((n+1) mod 2). - Paolo P. Lava, Oct 20 2006

G.f. 3*(1 + 2*x)/((1 - x)*(1 + x)). - R. J. Mathar, Nov 21 2011

From Reinhard Zumkeller, Jul 03 2012: (Start)

a(n) = 3*A000034(n).

a(n) = A213999(n,2). (End)

a(n + 1) = 9 - a(n). - David A. Corneth, Nov 29 2018

MAPLE

seq(op([3, 6]), n=1..60); # Muniru A Asiru, Nov 29 2018

MATHEMATICA

PadRight[{}, 120, {3, 6}] (* Harvey P. Dale, Dec 12 2012 *)

PROG

(PARI) a(n)=3+n%2*3 \\ Charles R Greathouse IV, Dec 21 2011

(Haskell)

a010704 n = (* 3) . a000034

a010704_list = cycle [3, 6]  -- Reinhard Zumkeller, Jul 03 2012

(GAP) Flat(List([1..60], n->[3, 6])); # Muniru A Asiru, Nov 29 2018

CROSSREFS

Cf. A000034, A007283, A176105, A213999.

Sequence in context: A124860 A182412 A038138 * A323503 A303129 A170859

Adjacent sequences:  A010701 A010702 A010703 * A010705 A010706 A010707

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 04:40 EST 2019. Contains 319370 sequences. (Running on oeis4.)